29 results match your criteria: "UPM-MTDC Technology Centre III[Affiliation]"

SERS detects single molecules with exceptional sensitivity. To counter the issue of selectivity faced by point-of-care, herein, an externally applied electric field that allows electrical modulation and electromigrates unbound SERS tags without multiple washing steps is successfully developed and demonstrated to improve the biosensor's selectivity and sensitivity in multiplexed detection of cTnI, HDL, and LDL in human serum at a low LoD. Ultra-sensitive detectors can detect signals from non-specifically absorbed species, and these species can cover up overlapping analyte peaks, amplifying the effect of non-specific binding.

View Article and Find Full Text PDF

Understanding the microbial communities in asymptomatic oil palm seedlings is crucial for developing disease-suppressive microbiota against basal stem rot (BSR) in oil palm. In this study, we compared the microbial communities in bulk soil, rhizosphere, and endosphere of control, asymptomatic, and symptomatic seedlings following inoculation with Ganoderma boninense. Our findings revealed significant shifts in microbial structure and interactions, particularly in asymptomatic seedlings.

View Article and Find Full Text PDF

During the milling process of palm oil, the degree of palm fruit ripeness is a critical factor that affects the quality and quantity of the oil. As the palm fruit matures, its chlorophyll level decreases, and since chlorophyll in oil has undesirable effects on hydrogenation, bleachability, and oxidative degradation, it's important to monitor the chlorophyll content in palm oil during the milling process. This study investigated the use of light-induced chlorophyll fluorescence (LICF) for non-invasive and real-time monitoring of chlorophyll content in diluted crude palm oil (DCO) located at the dilution and oil classification point in palm oil mill.

View Article and Find Full Text PDF

Quality and food safety are of paramount importance to the palm oil industry. In this work, we investigated the practicability of ethylene gas exogenous application on post-harvested oil palm fruit bunches to improve the crude palm oil (CPO) quality. The bunches were first exposed to ethylene gas for 24 hr to induce abscission of palm fruits from bunches.

View Article and Find Full Text PDF

Palm oil supply chain factors impacting chlorinated precursors of 3-MCPD esters.

Food Addit Contam Part A Chem Anal Control Expo Risk Assess

December 2021

Sime Darby Plantation Technology Centre Sdn Bhd, 1st Floor, Block B, UPM-MTDC Technology Centre III, Lebuh Silikon, Universiti Putra Malaysia, Serdang, Malaysia.

Chlorinated compounds such as sphingolipid-based organochlorine compounds are precursors for the formation of 3-monochlororopanediol (3-MCPD) esters in palm oil. This study evaluates the effects of several factors within the palm oil supply chain on the levels of sphingolipid-based organochlorine, which in turn may influence the formation of 3-MCPD esters during refining. These factors include application of inorganic chlorinated fertiliser in the oil palm plantation, bruising and degradation of oil palm fruits after harvest, recycling of steriliser condensate as water for dilution of crude oil during oil palm milling, water washing of palm oil and different refining conditions.

View Article and Find Full Text PDF

Background: Phosphorus (P), in its orthophosphate form (Pi) is an essential macronutrient for oil palm early growth development in which Pi deficiency could later on be reflected in lower biomass production. Application of phosphate rock, a non-renewable resource has been the common practice to increase Pi accessibility and maintain crop productivity in Malaysia. However, high fixation rate of Pi in the native acidic tropical soils has led to excessive utilization of P fertilizers.

View Article and Find Full Text PDF

Aspergillus fumigatus AR04 obeys Arrhenius' rule in cultivation temperature shifts from 30 to 40°C.

Microb Biotechnol

July 2021

Institute of Biotechnology, Brandenburg University of Technology Cottbus - Senftenberg, Universitätsplatz 1, Senftenberg, D-01958, Germany.

To set a benchmark in fungal growth rate, a differential analysis of prototrophic Aspergillus fumigatus AR04 with three ascomycetes applied in > 10 t year scale was performed, i.e. Ashbya gosspyii (riboflavin), Aspergillus niger (citric acid) and Aspergillus oryzae (food-processing).

View Article and Find Full Text PDF

Residual analysis of chitosan-based agronanofungicides as a sustainable alternative in oil palm disease management.

Sci Rep

December 2020

Sime Darby Technology Centre Sdn. Bhd., UPM-MTDC Technology Centre III, Lebuh Silikon, Universiti Putra Malaysia, 1st Floor, Block B, 43400, Serdang, Selangor, Malaysia.

The nanoformulations of pesticides have shown great interest from many parties due to their slow release capability and site-specific delivery. Hence, in this work, a new nanoformulation of a fungicide, namely chitosan-hexaconazole nanoparticles with a mean diameter size of 18 nm was subjected to the residual analysis on oil palm tissue, leaf and palm oil (crude palm oil and crude palm kernel oil) using a quick, easy, cheap, effective, rugged and safe (QuEChERS) method coupled with the gas chromatography-micro electron capture detector (GC-µECD). The chitosan-hexaconazole nanoparticles were applied using the trunk injection method at 4.

View Article and Find Full Text PDF

Four different methods were evaluated to extract proteins from "Musang King" durian pulps and subsequently proteins with different abundance between fresh and long term frozen storage were identified using two-dimensional polyacrylamide gel electrophoresis coupled with matrix-assisted laser desorption/ionization time-of-flight mass spectrometer analyses. The acetone-phenol method was found to produce good protein yields and gave the highest gel resolution and reproducibility. Differential protein analyses of the durian pulp revealed that 15 proteins were down-regulated and three other proteins were up-regulated after a year of frozen storage.

View Article and Find Full Text PDF

Background: Sugars and triglycerides are common carbon sources for microorganisms. Nonetheless, a systematic comparative interpretation of metabolic changes upon vegetable oil or glucose as sole carbon source is still lacking. Selected fungi that can grow in acidic mineral salt media (MSM) with vegetable oil had been identified recently.

View Article and Find Full Text PDF

Health risks which result from exposure to pesticides have sparked awareness among researchers, triggering the idea of developing nanoencapsulation pesticides with the aim to enhance cytoprotection as well as genoprotection of the pesticides. In addition, nanocapsules of pesticides have slow release capability, high bioavailability, and site-specific delivery, which has attracted great interest from researchers. Hence, the objective of this work is to synthesize a nanoformulation of a fungicide of different sizes, namely, chitosan-hexaconazole nanoparticles (18 nm), chitosan-dazomet nanoparticles (7 nm), and chitosan-hexaconazole-dazomet nanoparticles (5 nm), which were then subjected to toxicological evaluations, including cytotoxicity, genotoxicity, cell death assay, and dermal irritation assays.

View Article and Find Full Text PDF

Although fungicides could be the best solution in combating fungal infections in crops, however, the phytotoxic level of fungicides to the crops should be tested first to ensure that it is safe for the crops. Moreover, nanocarrier systems of fungicides could play a significant role in the advancement of crop protection. For this reason, chitosan was chosen in the present study as a nanocarrier for fungicides of hexaconazole and/or dazomet in the development of a new generation of agronanofungicides with a high antifungal potent agent and no phytotoxic effect.

View Article and Find Full Text PDF

Chitosan-Based Agronanofungicides as a Sustainable Alternative in the Basal Stem Rot Disease Management.

J Agric Food Chem

April 2020

Sime Darby Technology Centre Sdn. Bhd., UPM-MTDC Technology Centre III, Universiti Putra Malaysia, 1st Floor, Block B, Lebuh Silikon, 43400 Serdang, Selangor, Malaysia.

The rise of environmental and health concerns due to the excessive use of the conventional fungicide urges the search for sustainable alternatives of agronanofungicides where the latter is aimed to enhance plant uptake and minimize the volatilization, leaching, and runoff of fungicides. With this in mind, fungicides of hexaconazole and/or dazomet were encapsulated into chitosan nanoparticles for the formulation of chitosan-based agronanofungicides. In the present study, chitosan nanoparticles (2 nm), chitosan-hexaconazole nanoparticles (18 and 168 nm), chitosan-dazomet nanoparticles (7 and 32 nm), and chitosan-hexaconazole-dazomet nanoparticles (5 and 58 nm) were synthesized and used as potent antifungal agents in combating the basal stem rot (BSR) disease caused by in which they were evaluated via an artificial inoculation of oil palm seedlings with the rubber woodblock, which was fully colonized with the fungal mycelium.

View Article and Find Full Text PDF

The excessive use of fungicides may be of environmental and health concerns. Hence, to overcome this problem, chitosan as a controlled release matrix was used in this work to encapsulate the fungicide for the development of enhanced fungicide nanodelivery system. In this proposed study, dual-loaded fungicides (hexaconazole and dazomet) were simultaneously encapsulated into chitosan nanoparticles as an antifungal agent on ().

View Article and Find Full Text PDF

Fungicide is used to control fungal disease by destroying and inhibiting the fungus or fungal spores that cause the disease. However, failure to deliver fungicide to the disease region leads to ineffectiveness in the disease control. Hence, in the present study, nanotechnology has enabled the fungicide active agents (hexaconazole) to be encapsulated into chitosan nanoparticles with the aim of developing a fungicide nanodelivery system that can transport them more effectively to the target cells ( fungus).

View Article and Find Full Text PDF

A Potent Antifungal Agent for Basal Stem Rot Disease Treatment in Oil Palms Based on Chitosan-Dazomet Nanoparticles.

Int J Mol Sci

May 2019

Sime Darby Technology Centre Sdn. Bhd., UPM-MTDC Technology Centre III, Lebuh Silikon, Universiti Putra Malaysia, 1st Floor, Block B, 43400, Serdang, Selangor, Malaysia.

The use of nanotechnology could play a significant role in the agriculture sector, especially in the preparation of new-generation agronanochemicals. Currently, the economically important plant of Malaysia, the oil palm, faces the threat of a devastating disease which is particularly caused by a pathogenic fungus, For the development of an effective antifungal agent, a series of chitosan nanoparticles loaded with a fumigant, dazomet, were prepared using various concentrations of sodium tripolyphosphate (TPP)-2.5, 5, 10, and 20 mg/mL, abbreviated as CDEN2.

View Article and Find Full Text PDF

CORNAS: coverage-dependent RNA-Seq analysis of gene expression data without biological replicates.

BMC Bioinformatics

December 2017

Institute of Biological Sciences, Faculty of Science, University of Malaya, Kuala Lumpur, 50603, Malaysia.

Background: In current statistical methods for calling differentially expressed genes in RNA-Seq experiments, the assumption is that an adjusted observed gene count represents an unknown true gene count. This adjustment usually consists of a normalization step to account for heterogeneous sample library sizes, and then the resulting normalized gene counts are used as input for parametric or non-parametric differential gene expression tests. A distribution of true gene counts, each with a different probability, can result in the same observed gene count.

View Article and Find Full Text PDF

Natural Organochlorines as Precursors of 3-Monochloropropanediol Esters in Vegetable Oils.

J Agric Food Chem

January 2018

Sime Darby Technology Centre Sdn. Bhd. , 1st Floor, Block B, UPM-MTDC Technology Centre III, Lebuh Silikon, 43400 Serdang, Selangor, Malaysia.

During high-temperature refining of vegetable oils, 3-monochloropropanediol (3-MCPD) esters, possible carcinogens, are formed from acylglycerol in the presence of a chlorine source. To investigate organochlorine compounds in vegetable oils as possible precursors for 3-MCPD esters, we tested crude palm, soybean, rapeseed, sunflower, corn, coconut, and olive oils for the presence of organochlorine compounds. Having found them in all vegetable oils tested, we focused subsequent study on oil palm products.

View Article and Find Full Text PDF

Differential gene expression at different stages of mesocarp development in high- and low-yielding oil palm.

BMC Genomics

June 2017

Sime Darby Technology Centre Sdn Bhd, 1st Floor, Block B, UPM-MTDC Technology Centre III, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia.

Background: The oil yield trait of oil palm is expected to involve multiple genes, environmental influences and interactions. Many of the underlying mechanisms that contribute to oil yield are still poorly understood. In this study, we used a microarray approach to study the gene expression profiles of mesocarp tissue at different developmental stages, comparing genetically related high- and low- oil yielding palms to identify genes that contributed to the higher oil-yielding palm and might contribute to the wider genetic improvement of oil palm breeding populations.

View Article and Find Full Text PDF

An effective placental cotyledons proteins extraction method for 2D gel electrophoresis.

Electrophoresis

March 2017

Medical Genetics Unit, Department of Biomedical Science, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Selangor, Malaysia.

Effective protein extraction is essential especially in producing a well-resolved proteome on 2D gels. A well-resolved placental cotyledon proteome, with good reproducibility, have allowed researchers to study the proteins underlying the physiology and pathophysiology of pregnancy. The aim of this study is to determine the best protein extraction protocol for the extraction of protein from placental cotyledons tissues for a two-dimensional gel electrophoresis (2D-GE).

View Article and Find Full Text PDF

Amino Acid and Secondary Metabolite Production in Embryogenic and Non-Embryogenic Callus of Fingerroot Ginger (Boesenbergia rotunda).

PLoS One

July 2017

Centre for Research in Biotechnology for Agriculture & Institute of Biological Sciences, Faculty Science, University of Malaya, 50603 Kuala Lumpur, Malaysia.

Interest in the medicinal properties of secondary metabolites of Boesenbergia rotunda (fingerroot ginger) has led to investigations into tissue culture of this plant. In this study, we profiled its primary and secondary metabolites, as well as hormones of embryogenic and non-embryogenic (dry and watery) callus and shoot base, Ultra Performance Liquid Chromatography-Mass Spectrometry together with histological characterization. Metabolite profiling showed relatively higher levels of glutamine, arginine and lysine in embryogenic callus than in dry and watery calli, while shoot base tissue showed an intermediate level of primary metabolites.

View Article and Find Full Text PDF

Actinomycete strain AUM 00500 was 99.5 % similar to Streptomyces sanglieri NBRC 100784(T) and was evaluated for antagonistic activity towards Ganoderma boninense, the causative fungus of basal stem rot of oil palm. The strain showed strong antifungal activity towards G.

View Article and Find Full Text PDF

Differential abundance analysis of mesocarp protein from high- and low-yielding oil palms associates non-oil biosynthetic enzymes to lipid biosynthesis.

Proteome Sci

November 2015

Sime Darby Technology Centre Sdn. Bhd., UPM-MTDC Technology Centre III, Lebuh Silikon, Universiti Putra Malaysia, 1st Floor, Block B, 43400 Serdang, Selangor Malaysia.

Background: The oil palm Elaeis guineensis Jacq. which produces the highest yield per unit land area of the oil crops is the most important commercial oil crop in South East Asia. The fleshy mesocarp of oil palm fruit, where oil is mostly derived from, contains up to 90 % dry weight of oil (one of the most concentrated in plant tissues).

View Article and Find Full Text PDF

Optimization of Protein Extraction and Two-Dimensional Electrophoresis Protocols for Oil Palm Leaf.

Protein J

August 2015

Department of Integrative and Applied Biology, Sime Darby Technology Centre Sdn Bhd, 1st Floor, Block B, UPM-MTDC Technology Centre III, Universiti Putra Malaysia, Lebuh Silikon, 43400, Serdang, Selangor, Malaysia,

Oil palm (Elaeis guineensis) is an important economic crop cultivated for its nutritional palm oil. A significant amount of effort has been undertaken to understand oil palm growth and physiology at the molecular level, particularly in genomics and transcriptomics. Recently, proteomics studies have begun to garner interest.

View Article and Find Full Text PDF

The basidiomycete fungal pathogen Ganoderma boninense is the causative agent for the incurable basal stem rot (BSR) disease in oil palm. This disease causes significant annual crop losses in the oil palm industry. Currently, there is no effective method for disease control and elimination, nor is any molecular marker for early detection of the disease available.

View Article and Find Full Text PDF