124 results match your criteria: "UNC HIV Cure Center.[Affiliation]"

Article Synopsis
  • HIV-1 is a major global health problem due to reservoirs of dormant HIV in infected individuals that aren't eliminated by standard antiretroviral therapy.
  • The "Kick and Kill" strategy aims to activate these latent viruses using latency reversal agents (LRAs) like Protein Kinase C agonists (PKCa), which can disrupt dormant HIV despite concerns about their toxicity.
  • Resveratrol, a natural compound from grapes, shows promise in breaking HIV latency without triggering immune activation, suggesting it could be a safer option for targeting EGR1 to help eliminate HIV reservoirs.
View Article and Find Full Text PDF

Discovery of a large-scale, cell-state-responsive allosteric switch in the 7SK RNA using DANCE-MaP.

Mol Cell

May 2022

Verna and Marrs McClean Department of Biochemistry and Molecular Biology, Therapeutic Innovation Center (THINC), Baylor College of Medicine, Houston, TX 77030, USA; Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA. Electronic address:

7SK is a conserved noncoding RNA that regulates transcription by sequestering the transcription factor P-TEFb. 7SK function entails complex changes in RNA structure, but characterizing RNA dynamics in cells remains an unsolved challenge. We developed a single-molecule chemical probing strategy, DANCE-MaP (deconvolution and annotation of ribonucleic conformational ensembles), that defines per-nucleotide reactivity, direct base pairing interactions, tertiary interactions, and thermodynamic populations for each state in RNA structural ensembles from a single experiment.

View Article and Find Full Text PDF

The "shock and kill" strategy for HIV-1 cure incorporates latency-reversing agents (LRA) in combination with interventions that aid the host immune system in clearing virally reactivated cells. LRAs have not yet been investigated in pediatric clinical or preclinical studies. Here, we evaluated an inhibitor of apoptosis protein (IAP) inhibitor (IAPi), AZD5582, that activates the noncanonical NF-κB (ncNF-κB) signaling pathway to reverse latency.

View Article and Find Full Text PDF

Activation of the NF-κB signaling pathway by Protein Kinase C (PKC) agonists is a potent mechanism for human immunodeficiency virus (HIV) latency disruption in vitro. However, significant toxicity risks and the lack of evidence supporting their activity in vivo have limited further evaluation of PKC agonists as HIV latency-reversing agents (LRA) in cure strategies. Here we evaluated whether GSK445A, a stabilized ingenol-B derivative, can induce HIV/simian immunodeficiency virus (SIV) transcription and virus production in vitro and demonstrate pharmacological activity in nonhuman primates (NHP).

View Article and Find Full Text PDF

Crotonylation sensitizes IAPi-induced disruption of latent HIV by enhancing p100 cleavage into p52.

iScience

January 2022

UNC HIV Cure Center, Institute of Global Health and Infectious Diseases, The University of North Carolina at Chapel Hill, 120 Mason Farm Rd, Genetic Medicine Building, Room 2111, Chapel Hill, NC 27599-7042, USA.

The eradication of HIV infection is difficult to achieve because of stable viral reservoirs. Here, we show that crotonylation enhances AZD5582-induced noncanonical NF-κB (ncNF-κB) signaling, further augmenting HIV latency reversal in Jurkat and U1 cell line models of latency, HIV latently infected primary CD4+ T cells and resting CD4+ T cells isolated from people living with HIV. Crotonylation upregulated the levels of the active p52 subunit of NF-κB following AZD5582.

View Article and Find Full Text PDF

Latency Reversal and Clearance of Persistent HIV Infection.

Methods Mol Biol

March 2022

UNC HIV Cure Center, Department of Medicine, and Microbiology and Immunology, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, USA.

Efforts to prevent and treat human immunodeficiency virus type 1 (HIV) infection have begun to blunt the spread of HIV infection. Potent, safe, and well-tolerated antiretroviral therapy (ART) allows those infected with HIV to attain a life expectancy similar to that of HIV-uninfected individuals. But the persistence of the quiescent retroviral genome, enforced by the natural proliferative responses of the immune system itself, and a delicate balance of regulators viral expression, mandates lifelong ART suppression to prevent rebound viremia and the return of disease.

View Article and Find Full Text PDF

Despite the success of antiretroviral therapy (ART) for people living with HIV, lifelong treatment is required and there is no cure. HIV can integrate in the host genome and persist for the life span of the infected cell. These latently infected cells are not recognized as foreign because they are largely transcriptionally silent, but contain replication-competent virus that drives resurgence of the infection once ART is stopped.

View Article and Find Full Text PDF

A Plausible Link of TMPRSS2/ACE2/AR Signaling to Male Mortality during the COVID-19 Pandemic in the United States.

Pathogens

October 2021

UNC HIV Cure Center, Institute of Global Health and Infectious Diseases, University of North Carolina at Chapel Hill, 130 Mason Farm Rd., Chapel Hill, NC 27599-7030, USA.

The COVID-19 pandemic continues around the world, where the United States is among the worst in terms of both morbidity and fatality of the viral infection. We aim to investigate the plausible link of tissue SARS-CoV-2 viral entry gene expression, such as TMPRSS2 and ACE2, with infection and death by gender during the COVID-19 pandemic in the United States. We find a significantly higher incidence of COVID-19 death in men than in women, even though SARS-CoV-2 infection in women is higher than in men.

View Article and Find Full Text PDF

Immune correlates analysis of the mRNA-1273 COVID-19 vaccine efficacy clinical trial.

Science

January 2022

Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA.

In the coronavirus efficacy (COVE) phase 3 clinical trial, vaccine recipients were assessed for neutralizing and binding antibodies as correlates of risk for COVID-19 disease and as correlates of protection. These immune markers were measured at the time of second vaccination and 4 weeks later, with values reported in standardized World Health Organization international units. All markers were inversely associated with COVID-19 risk and directly associated with vaccine efficacy.

View Article and Find Full Text PDF

Bispecific HIVxCD3 DART molecules that co-engage the viral envelope glycoprotein (Env) on HIV-1-infected cells and the CD3 receptor on CD3+ T cells are designed to mediate the cytolysis of HIV-1-infected, Env-expressing cells. Using a novel system with cells from rhesus macaques (RMs) infected with a chimeric Simian-Human Immunodeficiency Virus (SHIV) CH505 and maintained on ART, we tested the ability of HIVxCD3 DART molecules to mediate elimination of -reactivated CD4+ T cells in the absence or presence of autologous CD8+ T cells. HIVxCD3 DART molecules with the anti-HIV-1 Env specificities of A32 or 7B2 (non-neutralizing antibodies) or PGT145 (broadly neutralizing antibody) were evaluated individually or combined.

View Article and Find Full Text PDF

The coronavirus disease 2019 (COVID-19) pandemic, caused by severe acute respiratory syndrome-related coronavirus 2 (SARS-CoV-2) has now caused over 2 million deaths worldwide and continues to expand. Currently, much is unknown about functionally neutralizing human antibody responses and durability to SARS-CoV-2 months after infection or the reason for the discrepancy in COVID-19 disease and sex. Using convalescent-phase sera collected from 101 COVID-19-recovered individuals 21 to 212 days after symptom onset with 48 additional longitudinal samples, we measured functionality and durability of serum antibodies.

View Article and Find Full Text PDF

The HIV-1 viral inhibition assay (VIA) measures CD8 T cell-mediated inhibition of HIV replication in CD4 T cells and is increasingly used for clinical testing of HIV vaccines and immunotherapies. The VIA has multiple sources of variability arising from HIV infection and co-culture of two T cell populations. Here, we describe multiple modifications to a 7-day VIA protocol, the most impactful being the introduction of independent replicate cultures for both HIV infected-CD4 (HIV-CD4) and HIV-CD4:CD8 T cell cultures.

View Article and Find Full Text PDF

Immunological Correlates of the HIV-1 Replication-Competent Reservoir Size.

Clin Infect Dis

October 2021

Division of Medical Virology, Department of Pathology, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa.

Article Synopsis
  • Understanding the factors that influence the HIV-1 reservoir is essential for finding a potential cure.
  • A study measured the persistence of HIV-1 infection after five years of treatment with antiretroviral therapy, which started during the chronic infection phase.
  • Key indicators such as the activation level of CD8+ T-cells, lowest CD4 count, and the ratio of CD4 to CD8 cells were found to predict the size of the HIV-1 reservoir.
View Article and Find Full Text PDF

IL-21 and IFNα therapy rescues terminally differentiated NK cells and limits SIV reservoir in ART-treated macaques.

Nat Commun

May 2021

Division of Microbiology and Immunology, Yerkes National Primate Research Center, Emory University, Atlanta, GA, USA.

Unlike HIV infection, which progresses to AIDS absent suppressive anti-retroviral therapy, nonpathogenic infections in natural hosts, such African green monkeys, are characterized by a lack of gut microbial translocation and robust secondary lymphoid natural killer cell responses resulting in an absence of chronic inflammation and limited SIV dissemination in lymph node B-cell follicles. Here we report, using the pathogenic model of antiretroviral therapy-treated, SIV-infected rhesus macaques that sequential interleukin-21 and interferon alpha therapy generate terminally differentiated blood natural killer cells (NKG2a/cCD16) with potent human leukocyte antigen-E-restricted activity in response to SIV envelope peptides. This is in contrast to control macaques, where less differentiated, interferon gamma-producing natural killer cells predominate.

View Article and Find Full Text PDF

Quantification of cell associated HIV RNA (ca-RNA) is one of the most important and commonly used methods to evaluate the performance of latency-reversing agents (LRAs). Copies of HIV RNA measured by qPCR, are often normalized to the input RNA or cell number. However, these could be affected by biological variability and/or technical errors, which can be avoided by using an internal reference gene.

View Article and Find Full Text PDF

Vaccines: Underlying Principles of Design and Testing.

Clin Pharmacol Ther

April 2021

Department of Microbiology & Immunology, UNC-Chapel Hill School of Medicine, Chapel Hill, North Carolina, USA.

In this paper, we review the key elements that should be considered to take a novel vaccine from the laboratory through to licensure in the modern era. This paper is divided into four sections. First, we discuss the host immune responses that we engage with vaccines.

View Article and Find Full Text PDF

The coronavirus disease 2019 (COVID-19) pandemic, caused by severe acute respiratory syndrome-related coronavirus-2 (SARS-CoV-2) has now caused over 2 million deaths worldwide and continues to expand. Currently, much is unknown about functionally neutralizing human antibody responses and durability to SARS-CoV-2. Using convalescent sera collected from 101 COVID-19 recovered individuals 21-212 days after symptom onset with forty-eight additional longitudinal samples, we measured functionality and durability of serum antibodies.

View Article and Find Full Text PDF

All coronaviruses known to have recently emerged as human pathogens probably originated in bats. Here we use a single experimental platform based on immunodeficient mice implanted with human lung tissue (hereafter, human lung-only mice (LoM)) to demonstrate the efficient in vivo replication of severe acute respiratory syndrome coronavirus (SARS-CoV), Middle East respiratory syndrome coronavirus (MERS-CoV) and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), as well as two endogenous SARS-like bat coronaviruses that show potential for emergence as human pathogens. Virus replication in this model occurs in bona fide human lung tissue and does not require any type of adaptation of the virus or the host.

View Article and Find Full Text PDF

The HIV proviral reservoir is the major barrier to cure. The predominantly replication-defective proviral landscape makes the measurement of virus that is likely to cause rebound upon antiretroviral therapy (ART)-cessation challenging. To address this issue, novel assays to measure intact HIV proviruses have been developed.

View Article and Find Full Text PDF

NF-κB sub-pathways and HIV cure: A revisit.

EBioMedicine

January 2021

UNC HIV Cure Center, Institute of Global Health and Infectious Diseases, United States; Department of Biochemistry and Biophysics, The University of North Carolina at Chapel Hill Chapel Hill, NC 27599-7042, United States. Electronic address:

HIV cure is thwarted by the presence of quiescent yet replication competent HIV-1 (HIV). Antiretroviral therapy (ART) is unable to eradicate reservoirs, and upon cessation of ART, HIV will rebound. This review encompasses the curative strategies of HIV in the context of NF-κB sub-pathways that are currently exploited and demonstrate promise in the disruption of latent HIV.

View Article and Find Full Text PDF

Crosstalk between innate and adaptive pathways is a critical component to developing an effective, lasting immune response. Among natural effector cells, innate-like γδ T cells promote immunity by facilitating communication between the two compartments and exerting cytotoxic effector functions. Dysregulation of γδ T cell populations is a byproduct of primary Humanimmunodeficiency virus (HIV) infection.

View Article and Find Full Text PDF

The Role of Toll-Like Receptors in Retroviral Infection.

Microorganisms

November 2020

Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27514, USA.

Toll-like receptors (TLRs) are key pathogen sensing receptors that respond to diverse microbial ligands, and trigger both innate and adaptive immune responses to infection. Since their discovery, a growing body of evidence has pointed to an important role for TLRs in retroviral infection and pathogenesis. These data suggest that multiple TLRs contribute to the anti-retroviral response, and that TLR engagement by retroviruses can have complex and divergent outcomes for infection.

View Article and Find Full Text PDF

HIV-1-specific CD8+ T cells are an important component of HIV-1 curative strategies. Viral variants in the HIV-1 reservoir may limit the capacity of T cells to detect and clear virus-infected cells. We investigated the patterns of T cell escape variants in the replication-competent reservoir of 25 persons living with HIV-1 (PLWH) durably suppressed on antiretroviral therapy (ART).

View Article and Find Full Text PDF