3 results match your criteria: "UMR 7636 CNRS-ESPCI-Universités Paris 6 et 7[Affiliation]"
Phys Rev E Stat Nonlin Soft Matter Phys
May 2015
Laboratoire de Physique et Mécanique des Milieux Hétérogènes (PMMH), UMR 7636 CNRS-ESPCI-Universités Paris 6 et 7, 10 rue Vauquelin 75231 Paris Cedex 05, France.
The flow of sand on a rough inclined plane is investigated experimentally. We directly show that a jammed layer of grains spontaneously forms below the avalanche. Its properties and its relation with the rheology of the flowing layer of grains are presented and discussed.
View Article and Find Full Text PDFPhys Rev Lett
August 2008
Laboratoire de Physique et Mécanique des Milieux Hétérogènes (PMMH), UMR 7636, CNRS - ESPCI - Universités Paris 6 et 7, 10, rue Vauquelin, 75231 Paris Cedex 05, France.
We study pattern formation during tensile deformation of confined viscoelastic layers. The use of a model system [poly(dimethylsiloxane) with different degrees of cross-linking] allows us to go continuously from a viscous liquid to an elastic solid. We observe two distinct regimes of fingering instabilities: a regime called "elastic" with interfacial crack propagation, where the fingering wavelength scales only with the film thickness, and a bulk regime called "viscoelastic," where the fingering instability shows a Saffman-Taylor-like behavior.
View Article and Find Full Text PDFPhys Rev Lett
October 2007
Laboratoire de Physique et Mécanique des Milieux Hétégogènes (PMMH), UMR 7636 CNRS - ESPCI - Universités Paris 6 et 7, 10, rue Vauquelin, 75231 Paris Cedex 05, France.
We study the Saffman-Taylor instability in a granular suspension formed by micrometric beads immersed in a viscous liquid. When using an effective viscosity for the flow of the suspension in the Hele-Shaw cell to define the control parameter of the system, the results for the finger width of stable fingers are found to be close to the classical results of Saffman-Taylor. One observes, however, an early destabilization of the fingers that can be attributed to the discrete nature of the individual grains.
View Article and Find Full Text PDF