3 results match your criteria: "UMR 7504 CNRS-University of Strasbourg[Affiliation]"
Nat Commun
May 2016
Institut de Physique et Chimie des Matériaux de Strasbourg (IPCMS), UMR 7504 CNRS-University of Strasbourg, 23, rue du Loess, 67034 Strasbourg 02, France.
Assemblies of nanoparticles are studied in many research fields from physics to medicine. However, as it is often difficult to produce mono-dispersed particles, investigating the key parameters enhancing their efficiency is blurred by wide size distributions. Indeed, near-field methods analyse a part of the sample that might not be representative of the full size distribution and macroscopic methods give average information including all particle sizes.
View Article and Find Full Text PDFInorg Chem
September 2015
Unité de Catalyse et Chimie du Solide (UCCS)-UMR CNRS 8181, Université de Lille Nord de France, USTL-ENSCL, Bat C7, BP 90108, 59652 Villeneuve d'Ascq, France.
The reaction of Na10[α-SiW9O34] with tetravalent metallic cations such as 4f ((NH4)2Ce(NO3)6), 5d (HfCl4), or 5f (UCl4 and Th(NO3)4) in a pH 4.7 sodium acetate buffer solution leads to the formation of four sandwich-type polyoxometalates [Ce4(μ(3)-O)2(SiW9O34)2(CH3COO)2](10-) (1), [U4(μ(3)-O)2(SiW9O34)2(CH3COO)2](10-) (2), [Th3(μ(3)-O)(μ(2)-OH)3(SiW9O34)2](13-) (3), and [Hf3(μ(2)-OH)3(SiW9O34)2](11-) (4). All four compounds consist of a polynuclear cluster fragment stabilized by two [α-SiW9O34](10-) polyanions.
View Article and Find Full Text PDFJ Chem Theory Comput
February 2010
WPI Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science, Namiki 1-1, Tsukuba, Ibaraki 305-0044, Japan, Max Planck Institute for Polymer Research, Mainz, Ackermannweg 10, 55124, Germany, Institut de Physique et Chimie des Matériaux de Strasbourg (IPCMS), UMR 7504 CNRS-University of Strasbourg, 23 rue du Loess, F-67034 Strasbourg, France, Computational Materials Center, National Institute for Materials Science, 1-2-1 Sengen, Tsukuba, Ibaraki 305-0047 Japan, and Fuel Cell Materials Center, Nanoionics Group, National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki, 305-0044, Japan.
Monoprotic and diprotic NH tautomerism in reduced oligoazaacenes, the pyrazinacenes, was studied by using first principles simulations. Stepwise reductions in the metadynamics-sampled free energy profile were observed during consecutive monoprotic tautomerizations, with energy barriers gradually reducing with increasing proton separation during monoprotic processes. This is accompanied by an increasing contribution from the quinoidal electronic structure, as evidenced by the computed highest occupied molecular orbital (HOMO) structure.
View Article and Find Full Text PDF