2 results match your criteria: "UMR 7204 MNHN-UPMC-CNRS Centre d'Ecologie et de Sciences de la COnservation[Affiliation]"

Due to its selective removal, fishing pressure has long influenced the dynamics of species based on their life history traits. Sensitivity to fishing increases along a "fast-to-slow" gradient of life history strategies, and the "slow" species (large, long-lived, late-maturing, giving birth to few large offspring) require the most time to recover from fishing. In the North East Atlantic, after having reached extreme levels, fishing pressure has decreased since the 1980's due to management measures such as total allowable catch (TAC) or area closure.

View Article and Find Full Text PDF

Global climate change has already caused bottom temperatures of coastal marine ecosystems to increase worldwide. These ecosystems face many pressures, of which fishing is one of the most important. While consequences of global warming on commercial species are studied extensively, the importance of the increase in bottom temperature and of variation in fishing effort is more rarely considered together in these exploited ecosystems.

View Article and Find Full Text PDF