71 results match your criteria: "UMR 6098 CNRS and Universites d'Aix-Marseille I & II[Affiliation]"

The RNA-dependent RNA polymerase (RdRp) is a central piece in the replication machinery of RNA viruses. In picornaviruses this essential RdRp activity also uridylates the VPg peptide, which then serves as a primer for RNA synthesis. Previous genetic, binding, and biochemical data have identified a VPg binding site on poliovirus RdRp and have shown that is was implicated in VPg uridylation.

View Article and Find Full Text PDF

The flavivirus polymerase as a target for drug discovery.

Antiviral Res

October 2008

Architecture et Fonction des Macromolécules Biologiques, CNRS and Universités d'Aix-Marseille I et II, UMR 6098, ESIL Case 925, 13288 Marseille, France.

Flaviviruses are emerging pathogens of increasingly important public health concern in the world. For most flaviviruses such as dengue virus (DENV) and West Nile virus (WNV) neither vaccine nor antiviral treatment is available. The viral RNA-dependent RNA polymerase (RdRp) non-structural protein 5 (NS5) has no equivalent in the host cell and is essential for viral replication.

View Article and Find Full Text PDF

Green fluorescent protein and factorial approach: an effective partnership for screening the soluble expression of recombinant proteins in Escherichia coli.

Protein Expr Purif

October 2008

Architecture et Fonction des Macromolécules Biologiques, UMR 6098, CNRS and Universités d'Aix-Marseille I and II, Case 932 Campus de Luminy, 163 Avenue de Luminy 13288 Marseille Cedex 09, France.

We report how the combined use of protein expression reporter green fluorescent protein (GFP), and of an incomplete factorial approach ("InFFact") made of 12 combinations of different states of three expression variables (bacterial strains, culture media and expression temperatures) created a convenient tool for screening the soluble expression of recombinant proteins in Escherichia coli (E. coli). In the first part of this work, we used two recombinant proteins that could be easily detected by Western blotting in the soluble fraction of E.

View Article and Find Full Text PDF

The coronavirus family of positive-strand RNA viruses includes important pathogens of livestock, companion animals, and humans, including the severe acute respiratory syndrome coronavirus that was responsible for a worldwide outbreak in 2003. The unusually complex coronavirus replicase/transcriptase is comprised of 15 or 16 virus-specific subunits that are autoproteolytically derived from two large polyproteins. In line with bioinformatics predictions, we now show that feline coronavirus (FCoV) nonstructural protein 16 (nsp16) possesses an S-adenosyl-L-methionine (AdoMet)-dependent RNA (nucleoside-2'O)-methyltransferase (2'O-MTase) activity that is capable of cap-1 formation.

View Article and Find Full Text PDF

The VIZIER project: preparedness against pathogenic RNA viruses.

Antiviral Res

April 2008

Architecture et Fonction des Macromolécules Biologiques, CNRS, and Universités d'Aix-Marseille I et II, UMR 6098, ESIL Case 925, 13288 Marseille Cedex 09, France.

Life-threatening RNA viruses emerge regularly, and often in an unpredictable manner. Yet, the very few drugs available against known RNA viruses have sometimes required decades of research for development. Can we generate preparedness for outbreaks of the, as yet, unknown viruses? The VIZIER (VIral enZymes InvolvEd in Replication) (http://www.

View Article and Find Full Text PDF

The N-terminal 33 kDa domain of non-structural protein 5 (NS5) of dengue virus (DV), named NS5MTase(DV), is involved in two of four steps required for the formation of the viral mRNA cap (7Me)GpppA(2'OMe), the guanine-N7 and the adenosine-2'O methylation. Its S-adenosyl-l-methionine (AdoMet) dependent 2'O-methyltransferase (MTase) activity has been shown on capped (7Me+/-)GpppAC(n) RNAs. Here we report structural and binding studies using cap analogues and capped RNAs.

View Article and Find Full Text PDF

Crystal structure of the RNA polymerase domain of the West Nile virus non-structural protein 5.

J Biol Chem

April 2007

Architecture et Fonction des Macromolécules Biologiques, CNRS, and Universités d'Aix-Marseille I et II, UMR 6098, ESIL Case 925, 13288 Marseille, France.

Viruses of the family Flaviviridae are important human and animal pathogens. Among them, the Flaviviruses dengue (DENV) and West Nile (WNV) cause regular outbreaks with fatal outcomes. The RNA-dependent RNA polymerase (RdRp) activity of the non-structural protein 5 (NS5) is a key activity for viral RNA replication.

View Article and Find Full Text PDF

Many eukaryotic and viral mRNAs, in which the first transcribed nucleotide is an adenosine, are decorated with a cap-1 structure, (7Me)G5'-ppp5'-A(2'OMe). The positive-sense RNA genomes of flaviviruses (Dengue, West Nile virus) for example show strict conservation of the adenosine. We set out to produce GpppA- and (7Me)GpppA-capped RNA oligonucleotides for non-radioactive mRNA cap methyltransferase assays and, in perspective, for studies of enzyme specificity in relation to substrate length as well as for co-crystallization studies.

View Article and Find Full Text PDF

The use of evolutionary biology concepts for genome annotation.

J Exp Zool B Mol Dev Evol

January 2007

Glycogenomics and Biomedical Structural Biology, AFMB Laboratory, UMR 6098, CNRS, Universités d'Aix-Marseille I et II, 13288 Marseille, France.

The past decade has seen the completion of numerous whole-genome sequencing projects, began with bacterial genomes and continued with eukaryotic species from different phyla: fungi, plants and animals. Besides, more biological information are produced and are shared thanks to information exchange systems, and more biological concepts, as well as more bioinformatics tools, are available. In this article, we will describe how the evolutionary biology concepts, as well as computer science, are useful for a better understanding of biology in general and genome annotation in particular.

View Article and Find Full Text PDF

Crystallization and preliminary X-ray diffraction analysis of protein 14 from Sulfolobus islandicus filamentous virus (SIFV).

Acta Crystallogr Sect F Struct Biol Cryst Commun

September 2006

Architecture et Fonction des Macromolécules Biologiques, CNRS and Universités d'Aix-Marseille I et II, UMR 6098, Case 932, 163 Avenue de Luminy, 13288 Marseille CEDEX 9, France.

A large-scale programme has been embarked upon aiming towards the structural determination of conserved proteins from viruses infecting hyperthermophilic archaea. Here, the crystallization of protein 14 from the archaeal virus SIFV is reported. This protein, which contains 111 residues (MW 13 465 Da), was cloned and expressed in Escherichia coli with an N-terminal His(6) tag and purified to homogeneity.

View Article and Find Full Text PDF

Flavivirus protein NS5 harbors the RNA-dependent RNA polymerase (RdRp) activity. In contrast to the RdRps of hepaci- and pestiviruses, which belong to the same family of Flaviviridae, NS5 carries two activities, a methyltransferase (MTase) and a RdRp. RdRp domains of Dengue virus (DV) and West Nile virus (WNV) NS5 were purified in high yield relative to full-length NS5 and showed full RdRp activity.

View Article and Find Full Text PDF

Phage p2, a member of the lactococcal 936 phage species, infects Lactococcus lactis strains by binding initially to specific carbohydrate receptors using its receptor-binding protein (RBP). The structures of p2 RBP, a homotrimeric protein composed of three domains, and of its complex with a neutralizing llama VH domain (VHH5) have been determined (S. Spinelli, A.

View Article and Find Full Text PDF

Psalmopeotoxin I (PcFK1) is a 33-amino-acid residue peptide isolated from the venom of the tarantula Psalmopoeus cambridgei. It has been recently shown to possess strong antiplasmodial activity against the intra-erythrocyte stage of Plasmodium falciparum in vitro. Although the molecular target for PcFK1 is not yet determined, this peptide does not lyse erythrocytes, is not cytotoxic to nucleated mammalian cells, and does not inhibit neuromuscular function.

View Article and Find Full Text PDF

Lactococcus lactis is a Gram-positive bacterium used extensively by the dairy industry for the manufacture of fermented milk products. The double-stranded DNA bacteriophage p2 infects specific L. lactis strains using a receptor-binding protein (RBP) located at the tip of its noncontractile tail.

View Article and Find Full Text PDF

Automated expression and solubility screening of His-tagged proteins in 96-well format.

Anal Biochem

November 2005

Architecture et Fonction des Macromolécules Biologiques, UMR 6098, CNRS/Universités d'Aix-Marseille I et II, Case 932, 163 Avenue de Luminy, 13288 Marseille cedex 9, France.

A growing need for sensitive and high-throughput methods for screening the expression and solubility of recombinant proteins exists in structural genomics. Originally, the emergency solution was to use immediately available techniques such as manual lysis of expression cells followed by analysis of protein expression by gel electrophoresis. However, these handmade methods quickly proved to be unfit for the high-throughput demand of postgenomics, and it is now generally accepted that the long-term solution to this problem will be based on automation, on industrial standard-formatted experiments, and on downsizing samples and consumables.

View Article and Find Full Text PDF

Measles virus nucleoprotein induces cell-proliferation arrest and apoptosis through NTAIL-NR and NCORE-FcgammaRIIB1 interactions, respectively.

J Gen Virol

June 2005

Laboratoire d'Immunobiologie Fondamentale et Clinique, INSERM U503 and UCBL1, IFR128 BioSciences Lyon-Gerland, 21 Avenue Tony Garnier, 69365 Lyon Cedex 07, France.

Measles virus (MV) nucleoprotein (N) is a cytosolic protein that is released into the extracellular compartment after apoptosis and/or secondary necrosis of MV-infected cells in vitro. Thus, MV-N becomes accessible to inhibitory cell-surface receptors: FcgammaRIIB and an uncharacterized nucleoprotein receptor (NR). MV-N is composed of two domains: NCORE (aa 1-400) and NTAIL (aa 401-525).

View Article and Find Full Text PDF

An unusual fold for potassium channel blockers: NMR structure of three toxins from the scorpion Opisthacanthus madagascariensis.

Biochem J

May 2005

Architecture et Fonction des Macromolécules Biologiques, UMR 6098, CNRS et Universités d'Aix-Marseille I et II, 31 Chemin Joseph Aiguier, 13402 Marseille Cedex 20, France.

The Om-toxins are short peptides (23-27 amino acids) purified from the venom of the scorpion Opisthacanthus madagascariensis. Their pharmacological targets are thought to be potassium channels. Like Csalpha/beta (cystine-stabilized alpha/beta) toxins, the Om-toxins alter the electrophysiological properties of these channels; however, they do not share any sequence similarity with other scorpion toxins.

View Article and Find Full Text PDF

A relaxed discrimination of 2'-O-methyl-GTP relative to GTP between de novo and Elongative RNA synthesis by the hepatitis C RNA-dependent RNA polymerase NS5B.

J Biol Chem

February 2005

CNRS and Universités d'Aix-Marseille I et II, UMR 6098, Architecture et Fonction des Macromolécules Biologiques, Ecole Supérieure d'Ingénieurs de Luminy-Case 925, 163 Avenue de Luminy, 13288 Marseille cedex 9, France.

Several nucleotide analogues have been described as inhibitors of NS5B, the essential viral RNA-dependent RNA polymerase of hepatitis C virus. However, their precise mode of action remains poorly defined at the molecular level, much like the different steps of de novo initiation of viral RNA synthesis. Here, we show that before elongation, de novo RNA synthesis is made of at least two distinct kinetic phases, the creation of the first phosphodiester bond being the most efficient nucleotide incorporation event.

View Article and Find Full Text PDF

A class of amino acid substitutions in drug-resistant HIV-1 reverse transcriptase (RT) is responsible for the selectively impaired incorporation of the nucleotide analog inhibitor into DNA. We have shown previously that alpha-boranophosphate nucleoside analogs suppress RT-mediated resistance when the catalytic rate is responsible for drug resistance such as in the case of K65R and dideoxy (dd)NTPs, and Q151M toward AZTTP and ddNTPs. Here, we extend this property to BH3-d4TTP and BH3-3TCTP toward their clinically relevant mutants Q151M and M184V, respectively.

View Article and Find Full Text PDF

Structural insights into the mechanism of formation of cellulosomes probed by small angle X-ray scattering.

J Biol Chem

December 2004

Architecture et Fonction des Macromolécules Biologiques, UMR 6098, CNRS and Universités d'Aix-Marseille I and II, 31 Chemin Joseph Aiguier, F-13402 Marseille cedex 20, France.

Exploring the mechanism by which the multiprotein complexes of cellulolytic organisms, the cellulosomes, attain their exceptional synergy is a challenge for biologists. We have studied the solution structures of the Clostridium cellulolyticum cellulosomal enzyme Cel48F in the free and complexed states with cohesins from Clostridium thermocellum and Clostridium cellulolyticum by small angle x-ray scattering in order to investigate the conformational events likely to occur upon complexation. The solution structure of the free cellulase indicates that the dockerin module is folded, whereas the linker connecting the catalytic module to the dockerin is extended and flexible.

View Article and Find Full Text PDF

High-throughput automated refolding screening of inclusion bodies.

Protein Sci

October 2004

Architecture et Fonction des Macromolécules Biologiques, UMR 6098, CNRS et Universités d'Aix-Marseille I et II, 31 chemin Joseph Aiguier, 13402 Marseille Cedex 20, France.

One of the main stumbling blocks encountered when attempting to express foreign proteins in Escherichia coli is the occurrence of amorphous aggregates of misfolded proteins, called inclusion bodies (IB). Developing efficient protein native structure recovery procedures based on IB refolding is therefore an important challenge. Unfortunately, there is no "universal" refolding buffer: Experience shows that refolding buffer composition varies from one protein to another.

View Article and Find Full Text PDF

Crystal structure of E.coli alcohol dehydrogenase YqhD: evidence of a covalently modified NADP coenzyme.

J Mol Biol

September 2004

Architecture et Fonction des Macromolécules Biologiques, UMR 6098, CNRS and Universités d'Aix-Marseille I and II, 31 chemin J. Aiguier, F-13402 Marseille Cedex 20, France.

In the course of a structural genomics program aiming at solving the structures of Escherichia coli open reading frame (ORF) products of unknown function, we have determined the structure of YqhD at 2.0A resolution using the single wavelength anomalous diffraction method at the Pt edge. The crystal structure of YqhD reveals that it is an NADP-dependent dehydrogenase, a result confirmed by activity measurements with several alcohols.

View Article and Find Full Text PDF

The ybdL gene of Escherichia coli codes for a protein of unknown function. Sequence analysis showed moderate homology to several vitamin B(6) dependent enzymes, suggesting that it may bind pyridoxal-5'-phosphate. The structure analysis of YbdL to 2.

View Article and Find Full Text PDF

The xylanase inhibitor protein I (XIP-I) from wheat Triticum aestivum is the prototype of a novel class of cereal protein inhibitors that inhibit fungal xylanases belonging to glycoside hydrolase families 10 (GH10) and 11 (GH11). The crystal structures of XIP-I in complex with Aspergillus nidulans (GH10) and Penicillium funiculosum (GH11) xylanases have been solved at 1.7 and 2.

View Article and Find Full Text PDF

Domain swapping of a llama VHH domain builds a crystal-wide beta-sheet structure.

FEBS Lett

April 2004

Architecture et Fonction des Macromolécules Biologiques, UMR-6098, CNRS and Universités d'Aix-Marseille I and II, 31 Chemin Joseph Aiguier, 13402 Marseille Cedex 20, France.

Among mammals, camelids have a unique immunological system since they produce functional antibodies devoid of light chains and CH1 domains. To bind antigens, whether they are proteins or haptens, camelids use the single domain VH from their heavy chain (VHH). We report here on such a llama VHH domain (VHH-R9) which was raised against a hapten, the RR6 red dye.

View Article and Find Full Text PDF