77 results match your criteria: "UMR 6098 CNRS and Universités d'Aix-Marseille I & II[Affiliation]"
J Mol Biol
September 2021
Unité de Virologie Moléculaire et Structurale, Centre de Recherche de Gif, CNRS UPR 3296 and IFR115, CNRS, Gif-sur-Yvette, France; Institute for Integrative Biology of the Cell, Université Paris-Saclay, CEA, CNRS, 91198 Gif-sur-Yvette, France. Electronic address:
Siphoviruses are main killers of bacteria. They use a long non-contractile tail to recognize the host cell and to deliver the genome from the viral capsid to the bacterial cytoplasm. Here, we define the molecular organization of the Bacillus subtilis bacteriophage SPP1 ~ 6.
View Article and Find Full Text PDFActa Crystallogr F Struct Biol Commun
December 2016
Section of Genetics, Cell Biology and Development, Department of Biology, University of Patras, University Campus, 26500 Patras, Greece.
Viral proteases are proteolytic enzymes that orchestrate the assembly of viral components during the viral life cycle and proliferation. Here, the expression, purification, crystallization and preliminary X-ray diffraction analysis are presented of protease 3C, the main protease of an emerging enterovirus, coxsackievirus B3, that is responsible for many cases of viral myocarditis. Polycrystalline protein precipitates suitable for X-ray powder diffraction (XRPD) measurements were produced in the presence of 22-28%(w/v) PEG 4000, 0.
View Article and Find Full Text PDFPLoS One
April 2016
Department of Microbiology, University of Massachusetts, Amherst, Massachusetts, United States of America; Graduate Program in Molecular and Cellular Biology, University of Massachusetts, Amherst, Massachusetts, United States of America; Institute for Cellular Engineering, University of Massachusetts, Amherst, Massachusetts, United States of America; Graduate Program in Organismal and Evolutionary Biology, University of Massachusetts, Amherst, Massachusetts, United States of America; Department of Biology, University of Massachusetts, Amherst, Massachusetts, United States of America.
Clostridium phytofermentans was isolated from forest soil and is distinguished by its capacity to directly ferment plant cell wall polysaccharides into ethanol as the primary product, suggesting that it possesses unusual catabolic pathways. The objective of the present study was to understand the molecular mechanisms of biomass conversion to ethanol in a single organism, Clostridium phytofermentans, by analyzing its complete genome and transcriptome during growth on plant carbohydrates. The saccharolytic versatility of C.
View Article and Find Full Text PDFMol Inform
February 2013
Department of Cell and Molecular Biology, Uppsala University, BMC, Box 596, S-751 24 Uppsala, Sweden.
Binding of the Dengue virus S-adenosyl-L-methionine (AdoMet)-dependent mRNA cap methyltransferase (NS5MTaseDV ) with adamantane derivatives was explored using molecular modeling methods and (nucleoside-2'O)-methyltransferase bioassay. The studied compounds include urea derivatives of adamantane and the antiviral drugs amantadine and rimantadine. The urea derivatives of adamantanes had previously been identified as inhibitors of NS5MTaseDV .
View Article and Find Full Text PDFMol Biosyst
January 2012
Architecture et Fonction des Macromolécules Biologiques, UMR 6098 CNRS et Universités d'Aix-Marseille I et II, Marseille, France.
This review focuses on the experimental data showing the abundance of structural disorder within the nucleoprotein (N) and phosphoprotein (P) from three paramyxoviruses, namely Nipah (NiV), Hendra (HeV) and measles (MeV) viruses. We provide a detailed description of the molecular mechanisms governing the disorder-to-order transition of the intrinsically disordered C-terminal domains (N(TAIL)) of their N proteins upon binding to the C-terminal X domain (XD) of the homologous P proteins. We also show that a significant flexibility persists within N(TAIL)-XD complexes, which therefore provide illustrative examples of "fuzziness".
View Article and Find Full Text PDFMol Microbiol
April 2011
Architecture et Fonction des Macromolécules Biologiques, UMR 6098 CNRS and Universités d'Aix-Marseille I & II, Campus de Luminy, case 932, 13288 Marseille cedex 09, France.
Virulent phages of the Siphoviridae family are responsible for milk fermentation failures worldwide. Here, we report the characterization of the product of the early expressed gene orf35 from Lactococcus lactis phage p2 (936 group). ORF35(p2), also named Sak3, is involved in the sensitivity of phage p2 to the antiviral abortive infection mechanism AbiK.
View Article and Find Full Text PDFJ Am Chem Soc
December 2010
Architecture et Fonction des Macromolécules Biologiques (AFMB, CNRS UMR-6098), Universités d'Aix-Marseille, Campus Luminy-Case 932, F-13288 Marseille cedex 09, France.
The active center of acetylcholinesterase (AChE), a target site for competitive inhibitors, resides centrosymmetric to the subunit at the base of a deep, narrow gorge lined by aromatic residues. At the gorge entry, a peripheral site encompasses overlapping binding loci for noncompetitive inhibitors, which alter substrate access to the gorge. The click-chemistry inhibitor TZ2PA6 links the active center ligand, tacrine, to the peripheral site ligand, propidium, through a biorthogonal reaction of an acetylene and an azide that forms either a syn1 or an anti1 triazole.
View Article and Find Full Text PDFPLoS Pathog
September 2010
Architecture et Fonction des Macromolécules Biologiques, CNRS and Universités d'Aix-Marseille I et II, UMR 6098, ESIL Case 925, Marseille, France.
Arenaviridae synthesize viral mRNAs using short capped primers presumably acquired from cellular transcripts by a 'cap-snatching' mechanism. Here, we report the crystal structure and functional characterization of the N-terminal 196 residues (NL1) of the L protein from the prototypic arenavirus: lymphocytic choriomeningitis virus. The NL1 domain is able to bind and cleave RNA.
View Article and Find Full Text PDFJ Biol Chem
November 2010
Architecture et Fonction des Macromolécules Biologiques, UMR 6098 CNRS and Universités d'Aix-Marseille I & II, Campus de Luminy, Case 932, 13288 Marseille Cedex 09, France.
Siphophage SPP1 infects the gram-positive bacterium Bacillus subtilis using its long non-contractile tail and tail-tip. Electron microscopy (EM) previously allowed a low resolution assignment of most orf products belonging to these regions. We report here the structure of the SPP1 distal tail protein (Dit, gp19.
View Article and Find Full Text PDFJ Biol Chem
October 2010
INSERM, UMR891, Centre de Recherche en Cancérologie de Marseille, Marseille F-13009, France; Institut Paoli-Calmettes, Marseille F-13009, France; Université Méditerranée, Marseille F-13007, France. Electronic address:
Several protein-protein interactions within the SARS-CoV proteome have been identified, one of them being between non-structural proteins nsp10 and nsp16. In this work, we have mapped key residues on the nsp10 surface involved in this interaction. Alanine-scanning mutagenesis, bioinformatics, and molecular modeling were used to identify several "hot spots," such as Val(42), Met(44), Ala(71), Lys(93), Gly(94), and Tyr(96), forming a continuous protein-protein surface of about 830 Å(2), bearing very conserved amino acids among coronaviruses.
View Article and Find Full Text PDFProtein Sci
September 2010
Architecture et Fonction des Macromolécules Biologiques, UMR 6098 CNRS and Universités d'Aix-Marseille I & II, Marseille, France.
SPP1 is a siphophage infecting the gram-positive bacterium Bacillus subtilis. The SPP1 tail electron microscopy (EM) reconstruction revealed that it is mainly constituted by conserved structural proteins such as the major tail proteins (gp17.1), the tape measure protein (gp18), the Distal tail protein (Dit, gp19.
View Article and Find Full Text PDFMicrob Cell Fact
July 2010
Architecture et Fonction des Macromolécules Biologiques, UMR 6098, CNRS et Université d'Aix-Marseille I et II, 163 Avenue de Luminy CP 925, 13288 Marseille Cedex 09, France.
Background: To reduce the production cost of bioethanol obtained from fermentation of the sugars provided by degradation of lignocellulosic biomass (i.e., second generation bioethanol), it is necessary to screen for new enzymes endowed with more efficient biomass degrading properties.
View Article and Find Full Text PDFAntiviral Res
September 2010
Architecture et Fonction des Macromolécules Biologiques, CNRS and Universités d'Aix-Marseille I et II, UMR 6098, ESIL Case 925, 13288 Marseille, France.
Upon viral infection, double-stranded viral RNA is detected very early in the host cell by several cellular 2'-5' oligoadenylate synthetases, which synthesize 2'-5' adenylate oligonucleotides that activate the cellular RNase L, firing an early primary antiviral response through self and non-self RNA cleavage. Transfecting cells with synthetic 2'-5' adenylate oligonucleotides activate RNase L, and thus provide a useful shortcut to study the early steps of cellular and viral commitments into this pathway. Defined 2'-5' adenylate oligonucleotides can be produced in vitro, but their controlled synthesis, purification, and characterisation have not been reported in detail.
View Article and Find Full Text PDFProtein Sci
July 2010
Architecture et Fonction des Macromolécules Biologiques, UMR 6098 CNRS and Universités d'Aix-Marseille I and II, Campus de Luminy, Case 932, 13288 Marseille Cedex 09, France.
SPP1 is a siphophage infecting the gram-positive bacterium Bacillus subtilis. It is constituted by an icosahedric head and a long non-contractile tail formed by gene products (gp) 17-21. A group of 5 small genes (gp 22-24.
View Article and Find Full Text PDFProtein Pept Lett
August 2010
Architecture et Fonction des Macromolécules Biologiques, UMR 6098 CNRS et Universités d'Aix-Marseille I et II, 163, Avenue de Luminy, Case 932, 13288 Marseille Cedex 09, France.
In this review, we summarize the main experimental data showing the abundance of structural disorder within the measles virus (MeV) nucleoprotein (N) and phosphoprotein (P), and focus on the molecular mechanisms governing the disorder-to-order transition of the intrinsically disordered C-terminal domain of MeV N (N(TAIL)) upon binding to the C-terminal X domain of P (XD). The functional implications of structural disorder are discussed in light of the ability of disordered regions to establish a complex molecular partnership, thereby leading to a variety of biological effects, including tethering of the polymerase complex onto the nucleocapsid template, stimulation of viral transcription and replication, and virus assembly. We also discuss the ability of N(TAIL) to establish interactions with additional cellular co-factors, including the major inducible heat shock protein, which can modulate the strength of the N(TAIL)-XD interaction.
View Article and Find Full Text PDFPLoS Pathog
April 2010
Architecture et Fonction des Macromolécules Biologiques, CNRS and Universités d'Aix-Marseille I et II, UMR 6098, ESIL Case 925, Marseille, France.
SARS-coronavirus (SARS-CoV) genome expression depends on the synthesis of a set of mRNAs, which presumably are capped at their 5' end and direct the synthesis of all viral proteins in the infected cell. Sixteen viral non-structural proteins (nsp1 to nsp16) constitute an unusually large replicase complex, which includes two methyltransferases putatively involved in viral mRNA cap formation. The S-adenosyl-L-methionine (AdoMet)-dependent (guanine-N7)-methyltransferase (N7-MTase) activity was recently attributed to nsp14, whereas nsp16 has been predicted to be the AdoMet-dependent (nucleoside-2'O)-methyltransferase.
View Article and Find Full Text PDFAntiviral Res
June 2010
Architecture et Fonction des Macromolécules Biologiques, CNRS and Universités d'Aix-Marseille I et II, UMR 6098, ESIL Case 925, 13288 Marseille, France.
The prevention and treatment of flavivirus infections are public health priorities. Dengue fever is the most prevalent mosquito-borne viral disease of humans, affecting more than 50 million people annually. Despite the urgent need to control dengue infections, neither specific antiviral therapies nor licensed vaccines exist and the molecular basis of dengue pathogenesis is not well understood.
View Article and Find Full Text PDFActa Crystallogr D Biol Crystallogr
March 2010
Architecture et Fonction des Macromolécules Biologiques UMR 6098, CNRS, Universités d'Aix-Marseille I et II, Case 932, 163 Avenue de Luminy, 13288 Marseille CEDEX 9, France.
J Mol Recognit
December 2010
Architecture et Fonction des Macromolécules Biologiques (AFMB), UMR 6098, CNRS, France and Universités d'Aix-Marseille I and II, 163 Avenue de Luminy, 13288 Marseille Cedex 09, France.
J Struct Biol
June 2010
Architecture et Fonction des Macromolécules Biologiques, UMR 6098 CNRS and Universités d'Aix-Marseille I & II, Campus de Luminy, case 932, 13288 Marseille Cedex 09, France.
Virulent phages are responsible for milk fermentation failures in the dairy industry, due to their ability to infect starter cultures containing strains of Lactococcus lactis. Single-strand annealing proteins (SSAPs) have been found in several lactococcal phages, among which Sak in the phage ul36. Sak has been recently shown to be a functional homolog of the human protein RAD52, involved in homologous recombination.
View Article and Find Full Text PDFMol Microbiol
September 2009
Architecture et Fonction des Macromolécules Biologiques, UMR 6098 CNRS and Universités d'Aix-Marseille I and II, Campus de Luminy, Marseille Cedex 09, France.
Lactococcus lactis, a Gram-positive bacterium widely used by the dairy industry, is subject to infection by a diverse population of virulent phages, predominantly by those of the 936 group, including the siphovirus phage p2. Confronted with the negative impact of phage infection on milk fermentation, the study of the biology of lactococcal provides insight from applied and fundamental perspectives. We decided to characterize the product of the orf34 gene from lactococcus phage p2, which was considered as a candidate single-stranded DNA binding protein (SSB) due to its localization downstream of a gene coding for a single-strand annealing protein.
View Article and Find Full Text PDFProteins
September 2009
Architecture et Fonction des Macromolécules Biologiques, CNRS and Universités d'Aix-Marseille I & II, UMR 6098, Case 932, 163 avenue de Luminy, 13288 Marseille cedex 9, France.
J Virol
July 2009
Architecture et Fonction des Macromolécules Biologiques, CNRS and Universités d'Aix-Marseille I et II, UMR 6098, ESIL Case 925, 13288 Marseille, France.
Macro domains (also called "X domains") constitute a protein module family present in all kingdoms of life, including viruses of the Coronaviridae and Togaviridae families. Crystal structures of the macro domain from the Chikungunya virus (an "Old World" alphavirus) and the Venezuelan equine encephalitis virus (a "New World" alphavirus) were determined at resolutions of 1.65 and 2.
View Article and Find Full Text PDFAnal Biochem
May 2009
Architecture et Fonction des Macromolécules Biologiques, CNRS and Universités d'Aix-Marseille I and II, UMR 6098, 13288 Marseille Cedex 9, France.
We report here a general strategy to overproduce and characterize membrane transporters. To illustrate our approach, we selected one member of the CorA transporter family among four tested that belonged to different species. This approach is transposable to other membrane proteins and involves the following steps: (i) cloning by homologous recombination, (ii) high-throughput expression screening, (iii) fermenter-based large-scale production, (iv) high-throughput detergent solubilization screening, (v) protein purification, (vi) multiangle static light scattering/refractometry characterization of purified proteins, (vii) circular dichroism spectroscopy, and (viii) detergent concentration measurements by Fourier transform infrared (FT-IR) spectroscopy.
View Article and Find Full Text PDFJ Bacteriol
February 2009
Architecture et Fonction des Macromolécules Biologiques, UMR 6098 CNRS and Universités d'Aix-Marseille I & II, Campus de Luminy, case 932, 13288 Marseille cedex 09, France.
We report here the characterization of the nonstructural protein ORF12 of the virulent lactococcal phage p2, which belongs to the Siphoviridae family. ORF12 was produced as a soluble protein, which forms large oligomers (6- to 15-mers) in solution. Using anti-ORF12 antibodies, we have confirmed that ORF12 is not found in the virion structure but is detected in the second half of the lytic cycle, indicating that it is a late-expressed protein.
View Article and Find Full Text PDF