6 results match your criteria: "UCLA-Department of Energy (DOE) Institute for Genomics and Proteomics[Affiliation]"
Protein Sci
December 2020
Institute for Protein Design, University of Washington, Seattle, Washington, USA.
Cyclic symmetry is frequent in protein and peptide homo-oligomers, but extremely rare within a single chain, as it is not compatible with free N- and C-termini. Here we describe the computational design of mixed-chirality peptide macrocycles with rigid structures that feature internal cyclic symmetries or improper rotational symmetries inaccessible to natural proteins. Crystal structures of three C2- and C3-symmetric macrocycles, and of six diverse S2-symmetric macrocycles, match the computationally-designed models with backbone heavy-atom RMSD values of 1 Å or better.
View Article and Find Full Text PDFScience
February 2018
Department of Biological Chemistry and Department of Chemistry and Biochemistry, University of California Los Angeles (UCLA), Howard Hughes Medical Institute (HHMI), UCLA-Department of Energy (DOE) Institute for Genomics and Proteomics, Los Angeles, CA 90095, USA.
Subcellular membraneless assemblies are a reinvigorated area of study in biology, with spirited scientific discussions on the forces between the low-complexity protein domains within these assemblies. To illuminate these forces, we determined the atomic structures of five segments from protein low-complexity domains associated with membraneless assemblies. Their common structural feature is the stacking of segments into kinked β sheets that pair into protofilaments.
View Article and Find Full Text PDFScience
July 2016
Department of Biochemistry, University of Washington, Seattle, WA 98195, USA. Institute for Protein Design, University of Washington, Seattle, WA 98195, USA. Howard Hughes Medical Institute, University of Washington, Seattle, WA 98195, USA.
Nature provides many examples of self- and co-assembling protein-based molecular machines, including icosahedral protein cages that serve as scaffolds, enzymes, and compartments for essential biochemical reactions and icosahedral virus capsids, which encapsidate and protect viral genomes and mediate entry into host cells. Inspired by these natural materials, we report the computational design and experimental characterization of co-assembling, two-component, 120-subunit icosahedral protein nanostructures with molecular weights (1.8 to 2.
View Article and Find Full Text PDFSci Transl Med
June 2015
Department of Molecular and Medical Pharmacology, Crump Institute for Molecular Imaging, David Geffen School of Medicine, University of California, Los Angeles (UCLA), Los Angeles, CA 90095, USA. UCLA-Department of Energy (DOE) Institute for Genomics and Proteomics, Los Angeles, CA 90095, USA.
Various diseases have been linked to the human microbiota, but the underlying molecular mechanisms of the microbiota in disease pathogenesis are often poorly understood. Using acne as a disease model, we aimed to understand the molecular response of the skin microbiota to host metabolite signaling in disease pathogenesis. Metatranscriptomic analysis revealed that the transcriptional profiles of the skin microbiota separated acne patients from healthy individuals.
View Article and Find Full Text PDFJ Biol Chem
October 2014
From the Departments of Biological Chemistry and Chemistry and Biochemistry, Howard Hughes Medical Institute, UCLA-Department of Energy (DOE) Institute for Genomics and Proteomics, UCLA, Los Angeles, California 90095 and
Systemic light chain amyloidosis is a lethal disease characterized by excess immunoglobulin light chains and light chain fragments composed of variable domains, which aggregate into amyloid fibers. These fibers accumulate and damage organs. Some light chains induce formation of amyloid fibers, whereas others do not, making it unclear what distinguishes amyloid formers from non-formers.
View Article and Find Full Text PDFJ Biol Chem
August 2014
From the Department of Microbiology, The Ohio State University, Columbus, Ohio 43210-1292 and
The first x-ray crystal structure has been solved for an activated transition-state analog-bound form II ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco). This enzyme, from Rhodopseudomonas palustris, assembles as a unique hexamer with three pairs of catalytic large subunit homodimers around a central 3-fold symmetry axis. This oligomer arrangement is unique among all known Rubisco structures, including the form II homolog from Rhodospirillum rubrum.
View Article and Find Full Text PDF