2 results match your criteria: "UCL Laboratory for Molecular Cell Biology - University College London[Affiliation]"

Local protein synthesis in mature brain axons regulates the structure and function of presynaptic boutons by adjusting the presynaptic proteome to local demands. This crucial mechanism underlies experience-dependent modifications of brain circuits, and its dysregulation may contribute to brain disorders, such as autism and intellectual disability. Here, we discuss recent advancements in the axonal transcriptome, axonal RNA localization and translation, and the role of presynaptic local translation in synaptic plasticity and memory.

View Article and Find Full Text PDF

Reversible N6-methyladenosine (mA) RNA modification is a posttranscriptional epigenetic modification of the RNA that regulates many key aspects of RNA metabolism and function. In this review, we highlight major recent advances in the field, with special emphasis on the potential link between mA modifications and RNA structure. We will also discuss the role of RNA methylation of neuronal transcripts, and the emerging evidence of a potential role in RNA transport and local translation in dendrites and axons of transcripts involved in synaptic functions and axon growth.

View Article and Find Full Text PDF