225 results match your criteria: "U.S. Department of Energy Joint Genome Institute[Affiliation]"

Topologically associating domain boundaries are required for normal genome function.

Commun Biol

April 2023

Environmental Genomics & System Biology Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA, 94720, USA.

Topologically associating domain (TAD) boundaries partition the genome into distinct regulatory territories. Anecdotal evidence suggests that their disruption may interfere with normal gene expression and cause disease phenotypes, but the overall extent to which this occurs remains unknown. Here we demonstrate that targeted deletions of TAD boundaries cause a range of disruptions to normal in vivo genome function and organismal development.

View Article and Find Full Text PDF
Article Synopsis
  • The order of rust fungi includes over 7,000 species that significantly affect agriculture, horticulture, forestry, and ecosystems.
  • Phakopsora pachyrhizi, the fungus responsible for Asian soybean rust disease, is a prime example of this impact and has a complex genome that has been challenging to assemble accurately.
  • Researchers sequenced three genomes of P. pachyrhizi, revealing a size of up to 1.25 Gb and a high transposable element content (~93%), demonstrating the role of these elements in host adaptation, stress responses, and genetic variability.
View Article and Find Full Text PDF

Two major chromosome evolution events with unrivaled conserved gene content in pomegranate.

Front Plant Sci

March 2023

Agriculture Victoria, Department of Jobs, Precincts and Regions, AgriBio, Centre for AgriBioscience, Bundoora, VIC, Australia.

Pomegranate has a unique evolutionary history given that different cultivars have eight or nine bivalent chromosomes with possible crossability between the two classes. Therefore, it is important to study chromosome evolution in pomegranate to understand the dynamics of its population. Here, we assembled the Azerbaijani cultivar "Azerbaijan guloyshasi" (AG2017; 2n = 16) and re-sequenced six cultivars to track the evolution of pomegranate and to compare it with previously published assembled and re-sequenced cultivars.

View Article and Find Full Text PDF

is a broadly distributed group of fungi that contains the cultivated shiitake mushroom, . We sequenced 24 genomes representing eight described species and several unnamed lineages of from 15 countries on four continents. comprises four major clades that arose in the Oligocene, three in the Americas and one in Asia-Australasia.

View Article and Find Full Text PDF

The power of next-generation sequencing has resulted in an explosive growth in the number of projects aiming to understand the metagenomic diversity of complex microbial environments. The interdisciplinary nature of this microbiome research community, along with the absence of reporting standards for microbiome data and samples, poses a significant challenge for follow-up studies. Commonly used names of metagenomes and metatranscriptomes in public databases currently lack the essential information necessary to accurately describe and classify the underlying samples, which makes a comparative analysis difficult to conduct and often results in misclassified sequences in data repositories.

View Article and Find Full Text PDF
Article Synopsis
  • Recombination is often limited at sex-determining loci in various organisms, including plants and fungi, with a focus on fungal ascomycetes.
  • Research on Schizothecium tetrasporum, a fungus in the Sordariales order, shows it produces mainly self-fertile spores due to significant meiotic segregation at its mating-type locus.
  • The study indicates a similar recombination suppression pattern as seen in other species, with distinct evolutionary strata revealing gene losses and disruptions, suggesting convergent evolution of self-fertile spores in ascomycete fungi.
View Article and Find Full Text PDF

Improved sequencing technologies have profoundly altered global views of fungal diversity and evolution. High-throughput sequencing methods are critical for studying fungi due to the cryptic, symbiotic nature of many species, particularly those that are difficult to culture. However, the low coverage genome sequencing (LCGS) approach to phylogenomic inference has not been widely applied to fungi.

View Article and Find Full Text PDF

Agave REVEILLE1 regulates the onset and release of seasonal dormancy in Populus.

Plant Physiol

March 2023

Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA.

Deciduous woody plants like poplar (Populus spp.) have seasonal bud dormancy. It has been challenging to simultaneously delay the onset of bud dormancy in the fall and advance bud break in the spring, as bud dormancy, and bud break were thought to be controlled by different genetic factors.

View Article and Find Full Text PDF

Tracking the metabolic activity of whole soil communities can improve our understanding of the transformation and fate of carbon in soils. We used stable isotope metabolomics to trace C from nine labeled carbon sources into the water-soluble metabolite pool of an agricultural soil over time. Soil was amended with a mixture of all nine sources, with one source isotopically labeled in each treatment.

View Article and Find Full Text PDF

The genome of the basidiomycete yeast Dioszegia hungarica strain PDD-24b-2 isolated from cloud water at the summit of puy de Dôme (France) was sequenced using a hybrid PacBio and Illumina sequencing strategy. The obtained assembled genome of 20.98 Mb and a GC content of 57% is structured in 16 large-scale contigs ranging from 90 kb to 5.

View Article and Find Full Text PDF

Genome-wide fetalization of enhancer architecture in heart disease.

Cell Rep

September 2022

Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA; U.S. Department of Energy Joint Genome Institute, Walnut Creek, CA 94598, USA; School of Natural Sciences, University of California, Merced, Merced, CA 95343, USA. Electronic address:

Heart disease is associated with re-expression of key transcription factors normally active only during prenatal development of the heart. However, the impact of this reactivation on the regulatory landscape in heart disease is unclear. Here, we use RNA-seq and ChIP-seq targeting a histone modification associated with active transcriptional enhancers to generate genome-wide enhancer maps from left ventricle tissue from up to 26 healthy controls, 18 individuals with idiopathic dilated cardiomyopathy (DCM), and five fetal hearts.

View Article and Find Full Text PDF

Intersubunit Coupling Enables Fast CO-Fixation by Reductive Carboxylases.

ACS Cent Sci

August 2022

Biosciences Division, SLAC National Accelerator Laboratory Menlo Park, California 94025, United States.

Enoyl-CoA carboxylases/reductases (ECRs) are some of the most efficient CO-fixing enzymes described to date. However, the molecular mechanisms underlying the extraordinary catalytic activity of ECRs on the level of the protein assembly remain elusive. Here we used a combination of ambient-temperature X-ray free electron laser (XFEL) and cryogenic synchrotron experiments to study the structural organization of the ECR from .

View Article and Find Full Text PDF

Differential Etv2 threshold requirement for endothelial and erythropoietic development.

Cell Rep

May 2022

Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA 94143, USA; Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA 94143, USA. Electronic address:

Endothelial and erythropoietic lineages arise from a common developmental progenitor. Etv2 is a master transcriptional regulator required for the development of both lineages. However, the mechanisms through which Etv2 initiates the gene-regulatory networks (GRNs) for endothelial and erythropoietic specification and how the two GRNs diverge downstream of Etv2 remain incompletely understood.

View Article and Find Full Text PDF

Little is known at the transcriptional level about microbial eukaryotic adaptations to short-term salinity change. Arctic microalgae are exposed to low salinity due to sea-ice melt and higher salinity with brine channel formation during freeze-up. Here, we investigate the transcriptional response of an ice-associated microalgae over salinities from 45 to 8.

View Article and Find Full Text PDF

MusMorph, a database of standardized mouse morphology data for morphometric meta-analyses.

Sci Data

May 2022

Alberta Children's Hospital Research Institute, University of Calgary, 28 Oki Dr NW, Calgary, AB, T3B 6A8, Canada.

Complex morphological traits are the product of many genes with transient or lasting developmental effects that interact in anatomical context. Mouse models are a key resource for disentangling such effects, because they offer myriad tools for manipulating the genome in a controlled environment. Unfortunately, phenotypic data are often obtained using laboratory-specific protocols, resulting in self-contained datasets that are difficult to relate to one another for larger scale analyses.

View Article and Find Full Text PDF

Wood-decaying fungi of the class Agaricomycetes (phylum Basidiomycota) are saprotrophs that break down lignocellulose and play an important role in nutrient recycling. They secrete a wide range of extracellular plant cell wall degrading enzymes that break down cellulose, hemicellulose, and lignin, the main building blocks of plant biomass. Although the production of these enzymes is regulated mainly at the transcriptional level, no activating regulators have been identified in any wood-decaying fungus in the class Agaricomycetes.

View Article and Find Full Text PDF

The halotolerant and osmotolerant yeast Zygosaccharomyces rouxii can produce multiple volatile compounds and has the ability to grow on lignocellulosic hydrolysates. We report the annotated genome sequence of Z. rouxii NRRL Y-64007 to support its development as a platform organism for biofuel and bioproduct production.

View Article and Find Full Text PDF

The Stiff Stalk heterotic pool is a foundation of US maize seed parent germplasm and has been heavily utilized by both public and private maize breeders since its inception in the 1930s. Flowering time and plant height are critical characteristics for both inbred parents and their test crossed hybrid progeny. To study these traits, a 6-parent multiparent advanced generation intercross population was developed including maize inbred lines B73, B84, PHB47 (B37 type), LH145 (B14 type), PHJ40 (novel early Stiff Stalk), and NKH8431 (B73/B14 type).

View Article and Find Full Text PDF

Phylogenomics and Comparative Genomics Highlight Specific Genetic Features in Species.

J Fungi (Basel)

March 2022

Institute of Microbiology, School of Ecology and Nature Conservation, Beijing Forestry University, Beijing 100083, China.

The species in Polyporales are ecologically and economically relevant wood decayers used in traditional medicine, but their genomic traits are still poorly documented. In the present study, we carried out a phylogenomic and comparative genomic analyses to better understand the genetic blueprint of this fungal lineage. We investigated seven genomes, including three new genomes, , , and .

View Article and Find Full Text PDF

As the focus for CRISPR/Cas-edited plants moves from proof-of-concept to real-world applications, precise gene manipulation will increasingly require concurrent multiplex editing for polygenic traits. A common approach for editing across multiple sites is to design one guide RNA (gRNA) per target; however, this complicates construct assembly and increases the possibility of off-target mutations. In this study, we utilized one gRNA to target MYB186, a known positive trichome regulator, as well as its paralogs MYB138 and MYB38 at a consensus site for mutagenesis in hybrid poplar (Populus tremula × P.

View Article and Find Full Text PDF

Sequencing and Analysis of the Entire Genome of the Mycoparasitic Bioeffector Fungus Trichoderma asperelloides Strain T 203 (Hypocreales).

Microbiol Resour Announc

February 2022

Department of Plant Pathology and Microbiology, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel.

The filamentous mycoparasitic fungus Trichoderma asperelloides (Hypocreales, Ascomycota, Dikarya) strain T 203 was isolated from soil in Israel by the Ilan Chet group in the 1980s. As it has been the subject of laboratory, greenhouse, and field experiments and has been incorporated into commercial agricultural preparations, its genome has been sequenced and analyzed.

View Article and Find Full Text PDF

Animal genomes show networks of deeply conserved gene linkages whose phylogenetic scope and chromosomal context remain unclear. Here, we report chromosome-scale conservation of synteny among bilaterians, cnidarians, and sponges and use comparative analysis to reconstruct ancestral chromosomes across major animal groups. Comparisons among diverse metazoans reveal the processes of chromosome evolution that produced contemporary karyotypes from their Precambrian progenitors.

View Article and Find Full Text PDF

Methylation of specific DNA sequences is ubiquitous in bacteria and has known roles in immunity and regulation of cellular processes, such as the cell cycle. Here, we explored DNA methylation in bacteria of the genus , including its potential role in regulating terminal differentiation during nitrogen-fixing symbiosis with legumes. Using single-molecule real-time sequencing, six genome-wide methylated motifs were identified across four strains, five of which were strain-specific.

View Article and Find Full Text PDF