247 results match your criteria: "Tupper Research Institute[Affiliation]"

Cocaine- and amphetamine-regulated transcript (CART) peptides are involved in several physiological and pathological processes, but their mechanism of action is unrevealed due to the lack of identified receptor(s). We provided evidence for the antihyperalgesic effect of CART(55-102) by inhibiting dipeptidyl-peptidase 4 (DPP4) in astrocytes and consequently reducing neuroinflammation in the rat spinal dorsal horn in a carrageenan-evoked inflammation model. Both naturally occurring CART(55-102) and CART(62-102) peptides are present in the spinal cord.

View Article and Find Full Text PDF

In contrast to mammals, birds have a higher basal metabolic rate and undertake wide range of energy-demanding activities. As a consequence, food deprivation for birds, even for a short period, poses major energy challenge. The energy-regulating hypothalamic homeostatic mechanisms, although extensively studied in mammals, are far from clear in the case of birds.

View Article and Find Full Text PDF

Origin of thyrotropin-releasing hormone neurons that innervate the tuberomammillary nuclei.

Brain Struct Funct

September 2022

Tupper Research Institute and Department of Medicine, Division of Endocrinology, Diabetes, and Metabolism, Tufts Medical Center, Boston, MA, 02111, USA.

Article Synopsis
  • * Researchers used retrograde and anterograde tracing techniques in rats and found that TRH neurons projecting to the TMN mainly originate from the tuberal lateral hypothalamus (TuLH).
  • * The findings suggest that TRH from TuLH could play a role in controlling food intake and energy balance by influencing histaminergic signaling in the TMN, potentially impacting homeostasis in rodents.
View Article and Find Full Text PDF

Glucagon-like peptide 1 (GLP-1) and its agonists exert anorexigenic effect at least partly via acting on GLP-1 receptors (GLP-1R) in the arcuate nucleus (ARC). While the anorexigenic, proopiomelanocortin (POMC) neurons of the ARC were shown previously to express GLP-1R, the putative GLP-1R-content of the orexigenic, neuropeptide Y (NPY) neurons remained so far undetected. As GLP-1R is abundant in the ventromedial ARC, where NPY neurons are located; here, we address the possibility that GLP-1 can act directly on the orexigenic NPY system via GLP-1R.

View Article and Find Full Text PDF

The mesolimbic dopamine (DA)-pathway regulates food-reward, feeding-related behaviour and energy balance. Evidence underscores the importance of feeding-related neuropeptides in modulating activity of these DA neurons. The neuropeptide, CART, a crucial regulator of energy balance, modulates DA-release, and influences the activity of ventral tegmental area (VTA) DAergic neurons in the mammalian brain.

View Article and Find Full Text PDF

A key feature of pulmonary arterial hypertension (PAH) is the hyperplastic proliferation exhibited by the vascular smooth muscle cells from patients (HPASMC). The growth inducers FOXM1 and PLK1 are highly upregulated in these cells. The mechanism by which these two proteins direct aberrant growth in these cells is not clear.

View Article and Find Full Text PDF

Glucagon-like peptide-1 (GLP-1) inhibits food intake and regulates glucose homeostasis. These actions are at least partly mediated by central GLP-1 receptor (GLP-1R). Little information is available, however, about the subcellular localization and the distribution of the GLP-1R protein in the rat brain.

View Article and Find Full Text PDF

Glucagon-like peptide-1 (GLP-1) exerts its anorexigenic effect at least partly via the proopiomelanocortin (POMC) neurons of the arcuate (ARC) nucleus. These neurons are known to express GLP-1 receptor (GLP-1R). The aim of the study was to determine whether in addition to its direct effect, GLP-1 also modulates how neuronal inputs can regulate the POMC neurons by acting on presynaptic terminals, ultrastructural and electrophysiological studies were performed on tissues of adult male mice.

View Article and Find Full Text PDF

A Glial-Neuronal Circuit in the Median Eminence Regulates Thyrotropin-Releasing Hormone-Release via the Endocannabinoid System.

iScience

March 2020

Department of Endocrine Neurobiology, Institute of Experimental Medicine, Szigony u. 43, Budapest 1083, Hungary; Department of Neuroscience, Tufts University School of Medicine, Boston 02111, MA, USA. Electronic address:

Based on the type-I cannabinoid receptor (CB1) content of hypophysiotropic axons and the involvement of tanycytes in the regulation of the hypothalamic-pituitary-thyroid (HPT) axis, we hypothesized that endocannabinoids are involved in the tanycyte-induced regulation of TRH release in the median eminence (ME). We demonstrated that CB1-immunoreactive TRH axons were associated to DAGLα-immunoreactive tanycyte processes in the external zone of ME and showed that endocannabinoids tonically inhibit the TRH release in this tissue. We showed that glutamate depolarizes the tanycytes, increases their intracellular Ca level and the 2-AG level of the ME via AMPA and kainite receptors and glutamate transport.

View Article and Find Full Text PDF

Glycine is a classical neurotransmitter that has role in both inhibitory and excitatory synapses. To understand whether glycinergic inputs are involved in the regulation of the hypophysiotropic thyrotropin-releasing hormone (TRH) neurons, the central controllers of the hypothalamic-pituitary-thyroid axis, the glycinergic innervation of the TRH neurons was studied in the hypothalamic paraventricular nucleus (PVN). Double-labeling immunocytochemistry and patch-clamp electrophysiology were used to determine the role of glycinergic neurons in the regulation of TRH neurons in the PVN.

View Article and Find Full Text PDF

Participation of PLK1 and FOXM1 in the hyperplastic proliferation of pulmonary artery smooth muscle cells in pulmonary arterial hypertension.

PLoS One

March 2020

Tupper Research Institute and Pulmonary, Critical Care, and Sleep Division, Tufts Medical Center, Boston, Massachusetts, United States of America.

Vascular smooth muscle cells from the pulmonary arteries (HPASMC) of subjects with pulmonary arterial hypertension (PAH) exhibit hyperplastic growth. The PAH HPASMC display an increased sensitivity to fetal bovine serum (FBS) and undergo growth at a very low, 0.2%, FBS concentration.

View Article and Find Full Text PDF

Oral administration of therapeutic peptides is hindered by poor absorption across the gastrointestinal barrier and extensive degradation by proteolytic enzymes. Here, we investigated the absorption of orally delivered semaglutide, a glucagon-like peptide-1 analog, coformulated with the absorption enhancer sodium -[8-(2-hydroxybenzoyl) aminocaprylate] (SNAC) in a tablet. In contrast to intestinal absorption usually seen with small molecules, clinical and preclinical dog studies revealed that absorption of semaglutide takes place in the stomach, is confined to an area in close proximity to the tablet surface, and requires coformulation with SNAC.

View Article and Find Full Text PDF

Thyrotropin-releasing hormone (TRH) regulates the hypothalamic-pituitary-thyroid axis in mammals and also regulates prolactin secretion, directly or indirectly via tuberoinfundibular dopamine neurons. Although TRH is abundantly expressed in teleost brain and believed to mediate neuronal communication, empirical evidence is lacking. We analyzed pro-TRH-mRNA expression, mapped TRH-immunoreactive elements in the brain and pituitary, and explored its role in regulation of hypophysiotropic dopamine (DA) neurons in the catfish, Clarias batrachus.

View Article and Find Full Text PDF

Endocannabinoid and nitric oxide systems of the hypothalamic paraventricular nucleus mediate effects of NPY on energy expenditure.

Mol Metab

December 2018

Department of Endocrine Neurobiology, Institute of Experimental Medicine, Hungarian Academy of Sciences, Budapest, H-1083 Hungary; Department of Medicine, Division of Endocrinology, Diabetes and Metabolism, Tupper Research Institute, Tufts Medical Center, Boston, MA, USA. Electronic address:

Objective: Neuropeptide Y (NPY) is one of the most potent orexigenic peptides. The hypothalamic paraventricular nucleus (PVN) is a major locus where NPY exerts its effects on energy homeostasis. We investigated how NPY exerts its effect within the PVN.

View Article and Find Full Text PDF

Prss56 expression in the rodent hypothalamus: Inverse correlation with pro-opiomelanocortin suggests oscillatory gene expression in adult rat tanycytes.

J Comp Neurol

October 2018

Department of Medicine, Division of Endocrinology, Diabetes and Metabolism, Tupper Research Institute, Tufts Medical Center, Boston, Massachusetts.

We recently reported that the number of hypothalamic tanycytes expressing pro-opiomelanocortin (Pomc) is highly variable among brains of adult rats. While its cause and significance remain unknown, identifying other variably expressed genes in tanycytes may help understand this curious phenomenon. In this in situ hybridization study, we report that the Prss56 gene, which encodes a trypsin-like serine protease and is expressed in neural stem/progenitor cells, shows a similarly variable mRNA expression in tanycytes of adult rats and correlates inversely with tanycyte Pomc mRNA.

View Article and Find Full Text PDF

Surge release of gonadotropin-releasing hormone (GnRH) is essential in the activation of pituitary gonadal unit at proestrus afternoon preceded by the rise of serum 17β-estradiol (E2) level during positive feedback period. Here, we describe a mechanism of positive estradiol feedback regulation acting directly on GnRH-green fluorescent protein (GFP) neurons of mice. Whole-cell clamp and loose patch recordings revealed that a high physiological dose of estradiol (200 pM), significantly increased firing rate at proestrus afternoon.

View Article and Find Full Text PDF

Microglia are instrumental for recognition and elimination of amyloid β oligomers (AβOs), but the long-term consequences of AβO-induced inflammatory changes in the brain are unclear. Here, we explored microglial responses and transciptome-level inflammatory signatures in the rat hippocampus after chronic AβO challenge. Middle-aged Long Evans rats received intracerebroventricular infusion of AβO or vehicle for 4 weeks, followed by treatment with artificial CSF or MCC950 for the subsequent 4 weeks.

View Article and Find Full Text PDF

Kisspeptin (KP) synthesizing neurons of the hypothalamic infundibular region are critically involved in the central regulation of fertility; these cells regulate pulsatile gonadotropin-releasing hormone (GnRH) secretion and mediate sex steroid feedback signals to GnRH neurons. Fine structural analysis of the human KP system is complicated by the use of post mortem tissues. To gain better insight into the neuroanatomy of the somato-dendritic cellular compartment, we introduced the diolistic labeling of immunohistochemically identified KP neurons using a gene gun loaded with the lipophilic dye, DiI.

View Article and Find Full Text PDF

A Transgenic Mouse Model for Detection of Tissue-Specific Thyroid Hormone Action.

Endocrinology

February 2018

Department of Endocrine Neurobiology, Institute of Experimental Medicine, Hungarian Academy of Sciences, Budapest, Hungary.

Thyroid hormone (TH) is present in the systemic circulation and thus should affect all cells similarly in the body. However, tissues have a complex machinery that allows tissue-specific optimization of local TH action that calls for the assessment of TH action in a tissue-specific manner. Here, we report the creation of a TH action indicator (THAI) mouse model to study tissue-specific TH action.

View Article and Find Full Text PDF

Two anorexigenic peptides, thyrotropin-releasing hormone (TRH) and urocortin 3 (UCN3), are co-expressed in a continuous neuronal group that extends from the perifornical area to the bed nucleus of stria terminalis, raising the possibility that this cell group may be involved in the regulation of energy homeostasis. In this study, therefore, we tested the hypothesis that the TRH/UCN3 neurons regulate food intake by influencing feeding-related neuropeptide Y (NPY) and/or proopiomelanocortin (POMC) neurons in the arcuate nucleus (ARC). Triple-labeled immunofluorescent preparations demonstrated that only very few NPY neurons (4.

View Article and Find Full Text PDF

Aims: Spironolactone (SPL) improves endothelial dysfunction and survival in heart failure. Immune modulation, including poorly understood mineralocorticoid receptor (MR)-independent effects of SPL might contribute to these benefits and possibly be useful in other inflammatory cardiovascular diseases such as pulmonary arterial hypertension.

Methods And Results: Using human embryonic kidney cells (HEK 293) expressing specific nuclear receptors, SPL suppressed NF-κB and AP-1 reporter activity independent of MR and other recognized nuclear receptor partners.

View Article and Find Full Text PDF

In the adult brain, both neurons and oligodendrocytes can be generated from neural stem cells located within the Sub-Ventricular Zone (SVZ). Physiological signals regulating neuronal glial fate are largely unknown. Here we report that a thyroid hormone (T)-free window, with or without a demyelinating insult, provides a favorable environment for SVZ-derived oligodendrocyte progenitor generation.

View Article and Find Full Text PDF

Neuronal connections of the central amygdalar nucleus with refeeding-activated brain areas in rats.

Brain Struct Funct

January 2018

Department of Endocrine Neurobiology, Institute of Experimental Medicine, Hungarian Academy of Sciences, 43 Szigony St, Budapest, 1083, Hungary.

Following fasting, satiety is accompanied by neuronal activation in brain areas including the central amygdalar nucleus (CEA). Since CEA is known to inhibit food intake, we hypothesized that CEA contributes to the termination of meal during refeeding. To better understand the organization of this satiety-related circuit, the interconnections of the CEA with refeeding-activated neuronal groups were elucidated using retrograde (cholera toxin-β subunit, CTB) and anterograde (phaseolus vulgaris leucoagglutinin, PHA-L) tracers in male rats.

View Article and Find Full Text PDF

Localization of connexin 43 gap junctions and hemichannels in tanycytes of adult mice.

Brain Res

October 2017

Department of Endocrine Neurobiology, Institute of Experimental Medicine, Hungarian Academy of Sciences, Budapest, Hungary; Department of Medicine, Division of Endocrinology, Diabetes and Metabolism, Tupper Research Institute, Tufts Medical Center, Boston, MA, USA. Electronic address:

Tanycytes are specialized glial cells lining the lateral walls and the floor of the third ventricle behind the optic chiasm. In addition to functioning as barrier cells, they also have an important role in the regulation of neuroendocrine axes and energy homeostasis. To determine whether tanycytes communicate with each other via Connexin 43 (Cx43) gap junctions, individual tanycytes were loaded with Lucifer yellow (LY) through a patch pipette.

View Article and Find Full Text PDF