4,157 results match your criteria: "Tsetse & Trypanosomiasis Research Institute[Affiliation]"

The trypanosomosis remains unresolved due to its impact on various hosts, leading to production losses in Ethiopia. In the Southwest of Oromia, multiple livestock species share grazing land in tsetse-infested areas. Thus, a cross-sectional study was conducted from December 2020 to December 2021 to determine the prevalence and associated risk factors of trypanosomosis in bovines, small ruminants, and equines, as well as the distribution of the vector in the Dabo Hana district of Southwest Oromia, Ethiopia.

View Article and Find Full Text PDF

Tsetse flies and trypanosomosis significantly impact bovine production and human health in sub-Saharan Africa, exacerbating underdevelopment, malnutrition, and poverty. Despite various control strategies, long-term success has been limited. This study evaluates the combined use of entomopathogenic fungi (EPF) and the sterile insect technique (SIT) to combat tsetse flies.

View Article and Find Full Text PDF

Unlabelled: Trypanosomes have different ways of communicating with each other. While communication via quorum sensing, or by the release and uptake of extracellular vesicles, is widespread in nature, the phenomenon of flagellar fusion has only been observed in . We showed previously that a small proportion of procyclic culture forms (corresponding to insect midgut forms) can fuse their flagella and exchange cytosolic and membrane proteins.

View Article and Find Full Text PDF

The extracellular parasite Trypanosoma brucei evades the immune system of the mammalian host by periodically exchanging its variant surface glycoprotein (VSG) coat. Hereby, only one VSG gene is transcribed from one of 15 subtelomeric so-called bloodstream form expression sites (BES) at any given timepoint, while all other BESs are silenced. VSG gene expression is altered by homologous recombination using a large VSG gene repertoire or by a so-called in situ switch, which activates a previously silent BES.

View Article and Find Full Text PDF

Stage-specific function of sphingolipid synthases in African trypanosomes.

mBio

December 2024

Department of Microbiology & Immunology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, New York, USA.

Unlabelled: The protozoan parasite is the only known eukaryote capable of synthesizing the three main phosphosphingolipids: sphingomyelin (SM), inositol phosphorylceramide (IPC), and ethanolamine phosphorylceramide (EPC). It has four paralogous genes encoding sphingolipid synthases (). TbSLS1 is a dedicated IPC synthase, TbSLS2 is a dedicated EPC synthase, and TbSLS3 and TbSLS4 are bifunctional SM/EPC synthases.

View Article and Find Full Text PDF

Tsetse flies are the sole cyclic vectors of African trypanosomes, which cause human and animal African trypanosomiases in Africa. Tsetse fly control remains a promising option for disease management. The sterile insect technique (SIT) stands as an environmentally friendly tool to control tsetse populations.

View Article and Find Full Text PDF

Mechanisms of life cycle simplification in African trypanosomes.

Nat Commun

December 2024

Institute for Immunology and Infection Research, School of Biological Sciences, University of Edinburgh, Edinburgh, EH9 3FL, UK.

African trypanosomes are important parasites in sub-Saharan Africa that undergo a quorum-sensing dependent development to morphologically 'stumpy forms' in mammalian hosts to favour transmission by tsetse flies. However, some trypanosome clades have simplified their lifecycle by escaping dependence on tsetse allowing an expanded geographic range, with direct transmission between hosts achieved via blood-feeding biting flies and vampire bats (Trypanosoma brucei evansi, causing 'surra') or through sexual transmission (Trypanosoma brucei equiperdum, causing 'dourine'). Concomitantly, stumpy formation is reduced and the isolates are described as monomorphic, with infections spread widely in Africa, Asia, South America and parts of Europe.

View Article and Find Full Text PDF

In sub-Saharan Africa, animal trypanosomosis is a wasting disease that reduces livestock's health and productivity. A recurrent cross-sectional investigation was carried out in the Dara district of the Sidama region in dry and wet seasons to estimate the apparent density of Glossina spp. and the seasonal prevalence of bovine trypanosomosis.

View Article and Find Full Text PDF

Human African trypanosomiasis (HAT) and African animal trypanosomosis (AAT) are devastating diseases spread by tsetse flies (Glossina spp.), affecting humans and livestock, respectively. Current efforts to manage these diseases by eliminating the vector through the sterile insect technique (SIT) require transportation of irradiated late-stage tsetse pupae under chilling, which has been reported to reduce the biological quality of emerged flies.

View Article and Find Full Text PDF

Gambiense human African trypanosomiasis (gHAT), a neglected tropical disease caused by a parasite transmitted by tsetse flies, once inflicted over 30,000 annual cases and resulted in an estimated half a million deaths in the late twentieth century. An international gHAT control program has reduced cases to under 1,000 annually, encouraging the World Health Organization to target the elimination of gHAT transmission by 2030. This requires adopting innovative disease control approaches in foci where transmission persists.

View Article and Find Full Text PDF
Article Synopsis
  • Bovine trypanosomosis significantly hampers livestock productivity in Ethiopia, affecting around 70 million cattle, prompting a review of research from the last decade to analyze its prevalence, risk factors, and vector density.
  • A meta-analysis of 26 studies found a 9% overall prevalence of bovine trypanosomosis, with the highest rates in Amhara and Oromia regions, indicating substantial variability among studies.
  • Important risk factors identified include poor body condition and coat color, with black-coated animals being much more vulnerable to the disease compared to other colors, highlighting the need for targeted management strategies.
View Article and Find Full Text PDF

The successful control of tsetse flies largely depends on understanding of the species available and abundance. This study assessed the species richness, abundance and apparent density of wild collected tsetse flies from selected human-wildlife-livestock interface in Tanzania. Seasonal trapping using baited NZI, Pyramidal and Biconical traps was done across selected wards.

View Article and Find Full Text PDF

Tsetse flies ( spp.) vector African trypanosomes that cause devastating diseases in humans and domestic animals. Within the genus, species in the Palpalis subgroup exhibit greater resistance to trypanosome infections compared to those in the subgroup.

View Article and Find Full Text PDF

Background: Tsetse flies (Glossina) transmit species of Trypanosoma which cause human African trypanosomiasis (HAT) and animal African trypanosomiasis (AAT). Understanding the epidemiology of this disease and controlling the vector rationally requires analysis of the abundance, age structure, infection rates and feeding patterns of tsetse populations.

Methods: We analysed a population of G.

View Article and Find Full Text PDF

The protozoan parasite Trypanosoma brucei evades clearance by the host immune system through antigenic variation of its dense variant surface glycoprotein (VSG) coat, periodically 'switching' expression of the VSG using a large genomic repertoire of VSG-encoding genes. Recent studies of antigenic variation in vivo have focused near exclusively on parasites in the bloodstream, but research has shown that many, if not most, parasites reside in the interstitial spaces of tissues. We sought to explore the dynamics of antigenic variation in extravascular parasite populations using VSG-seq, a high-throughput sequencing approach for profiling VSGs expressed in populations of T.

View Article and Find Full Text PDF

Introduction: Tsetse flies () transmit , which causes gambiense human African trypanosomiasis (gHAT). As part of national efforts to eliminate gHAT as a public health problem, Uganda implemented a large-scale programme of deploying Tiny Targets, which comprise panels of insecticide-treated material which attract and kill tsetse. At its peak, the programme was the largest tsetse control operation in Africa.

View Article and Find Full Text PDF

Communities living in African animal trypanosomiasis (AAT) endemic areas of Zambia use several control strategies to protect their livestock from the devastating effects of trypanosomiasis. Several studies have reported the effectiveness of trypanosomiasis control strategies based on retrospective data. In this study, we assessed incidence rates of AAT in cattle ( = 227) using a prospective cohort study comprising 4 treatment groups, i.

View Article and Find Full Text PDF

The premise of this article is that African historiography has yet to embrace the genetic basis of cattle tolerance to tsetse-borne trypanosomiasis due to the literature's emphasis on human illness and landscape modification. By the early 1980s, empirical research indicated that N'Dama cattle possessed a tolerance to the disease that was heritable and, as such, could be strengthened through breeding. The Gambia's first president, who was a former veterinary surgeon, contributed to the breed's reappraisal.

View Article and Find Full Text PDF

In Egypt, camel trypanosomiasis is widespread. From October 2021 to March 2022, we collected 181 blood samples from apparently healthy one-humped camels (Camelus dromedarius) in Cairo and Giza Governates. The objective of this study was to assess infection rates of trypanosomes using blood smear examination and PCR-sequencing assays.

View Article and Find Full Text PDF

An important consequence of the discontinuous distribution of insect populations within their geographic range is phenotypic divergence. Detection of this divergence can be challenging when it occurs through subtle shifts in morphological traits with complex geometries, such as insect wing venation. Here, we used landmark-based wing geometric morphometrics to investigate the population-level phenotypic variation of the two subspecies of , Machado and Westwood that occur in Zambia.

View Article and Find Full Text PDF

Background: Tsetse flies, the biological vectors of African trypanosomes, have established symbiotic associations with different bacteria. Their vector competence is suggested to be affected by bacterial endosymbionts. The current study provided the prevalence of three tsetse symbiotic bacteria and trypanosomes in Glossina species from Burkina Faso.

View Article and Find Full Text PDF

Novel vector control tools against African trypanosomiases require a deep understanding of the factors driving tsetse vector fitness or population resilience in their ecosystems. Following evidence of microbiota-mediated host fitness or traits shaping, including insecticide resistance in arthropod populations, we undertook a comparative study of the microbiota in wild-caught tsetse flies during vector control with deltamethrin-impregnated traps called Tiny Targets. The bacterial microbiome composition of tsetse flies collected before and after 6, 12, and 18 months of vector control were characterized using high-throughput sequencing of the V3-V4 hypervariable region of the bacterial 16S rRNA gene and compared.

View Article and Find Full Text PDF
Article Synopsis
  • Surveillance of "silent" human African Trypanosomiasis (HAT) foci in Cameroon is crucial for meeting the World Health Organization's goal of interrupting disease transmission by 2030, prompting a study on trypanosome species present in Bafia and Manoka island.
  • Using georeferenced traps, researchers captured 1683 tsetse flies and employed molecular methods to identify trypanosome species and examine blood meal sources, highlighting areas at high risk for transmission.
  • The study found a notable difference in tsetse fly density and infection rates between the two regions, with a 7.34% overall infection rate and mixed infections primarily involving Trypanozoon and T. congolense
View Article and Find Full Text PDF

Tsetse are the insects responsible for transmitting African trypanosomes, which cause sleeping sickness in humans and animal trypanosomiasis in wildlife and livestock. Knowing the age of these flies is important when assessing the effectiveness of vector control programs and modelling disease risk. Current methods to assess fly age are, however, labour-intensive, slow, and often inaccurate as skilled personnel are in short supply.

View Article and Find Full Text PDF

Introduction: Explanatory models of disease focus on individuals' and groups' understandings of diseases, revealing a disconnect between livestock keepers and animal health providers. Animal health providers rely on models grounded in their veterinary training and experience. At the same time, livestock keepers may construct models based on traditional knowledge and their lived experience with East Coast fever in their cattle herds.

View Article and Find Full Text PDF