70 results match your criteria: "Tri-Institutional Therapeutics Discovery Institute[Affiliation]"
Nature
January 2025
Immuno-Oncology Service, Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
Tertiary lymphoid structures (TLSs) are de novo ectopic lymphoid aggregates that regulate immunity in chronically inflamed tissues, including tumours. Although TLSs form due to inflammation-triggered activation of the lymphotoxin (LT)-LTβ receptor (LTβR) pathway, the inflammatory signals and cells that induce TLSs remain incompletely identified. Here we show that interleukin-33 (IL-33), the alarmin released by inflamed tissues, induces TLSs.
View Article and Find Full Text PDFHum Gene Ther
January 2024
Department of Genetic Medicine, Weill Cornell Medical College, New York, New York, USA.
Chronic hypereosinophilia, defined as persistent elevated blood levels of eosinophils ≥1,500/μL, is associated with tissue infiltration of eosinophils and consequent organ damage by eosinophil release of toxic mediators. The current therapies for chronic hypereosinophilia have limited success, require repetitive administration, and are associated with a variety of adverse effects. As a novel approach to treat chronic hypereosinophilia, we hypothesized that adeno-associated virus (AAV)-mediated delivery of an anti-human eosinophil antibody would provide one-time therapy that would mediate persistent suppression of blood eosinophil levels.
View Article and Find Full Text PDFNature
January 2025
Laboratory for RNA Molecular Biology, The Rockefeller University, New York, NY, USA.
Coronavirus disease 2019 (COVID-19) is caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). The rapid development of highly effective vaccines against SARS-CoV-2 has altered the trajectory of the pandemic, and antiviral therapeutics have further reduced the number of COVID-19 hospitalizations and deaths. Coronaviruses are enveloped, positive-sense, single-stranded RNA viruses that encode various structural and non-structural proteins, including those critical for viral RNA replication and evasion from innate immunity.
View Article and Find Full Text PDFJ Chem Theory Comput
August 2024
Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego 92093, United States.
Absolute binding free energy (ABFE) calculations with all-atom molecular dynamics (MD) have the potential to greatly reduce costs in the first stages of drug discovery. Here, we introduce BAT2, the new version of the Binding Affinity Tool (BAT.py), designed to combine full automation of ABFE calculations with high-performance MD simulations, making it a potential tool for virtual screening.
View Article and Find Full Text PDFCancer Discov
December 2024
Laboratory of Systems Cancer Biology, The Rockefeller University, New York, New York.
Pancreatic ductal adenocarcinoma (PDAC) is an increasingly diagnosed cancer that kills 90% of afflicted patients, with most patients receiving palliative chemotherapy. We identified neuronal pentraxin 1 (NPTX1) as a cancer-secreted protein that becomes overexpressed in human and murine PDAC cells during metastatic progression and identified adhesion molecule with Ig-like domain 2 (AMIGO2) as its receptor. Molecular, genetic, biochemical, and pharmacologic experiments revealed that secreted NPTX1 acts cell-autonomously on the AMIGO2 receptor to drive PDAC metastatic colonization of the liver-the primary site of PDAC metastasis.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
October 2024
Department of Microbiology and Immunology, Weill Cornell Medicine, 413 East 69 Street, New York, NY 10021, USA.
Tuberculosis remains a leading cause of death from a single infection worldwide. Drug resistance to existing and even new antimycobacterials calls for research into novel targets and unexplored mechanisms of action. Recently we reported on the development of tight-binding inhibitors of Mycobacterium tuberculosis (Mtb) lipoamide dehydrogenase (Lpd), which selectively inhibit the bacterial but not the human enzyme based on a differential modality of inhibitor interaction with these targets.
View Article and Find Full Text PDFEur J Nucl Med Mol Imaging
November 2024
Immunology Program, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY, 10065, USA.
Purpose: Immune cells are capable of eliminating leukemic cells, as evidenced by outcomes in hematopoietic cell transplantation (HCT). However, patients who fail induction therapy will not benefit from HCT due to their minimal residual disease (MRD) status. Thus, we aimed to develop an immunomodulatory agent to reduce MRD by activating immune effector cells in the presence of leukaemia cells via a novel fusion protein that chimerises two clinically tolerated biologics: a CD33 antibody and the IL15Ra/IL15 complex (CD33xIL15).
View Article and Find Full Text PDFParasit Vectors
June 2024
Department of Biological Sciences, Columbia University, New York, NY, 10027, USA.
Background: Female Aedes aegypti mosquitoes can spread disease-causing pathogens when they bite humans to obtain blood nutrients required for egg production. Following a complete blood meal, host-seeking is suppressed until eggs are laid. Neuropeptide Y-like receptor 7 (NPYLR7) plays a role in endogenous host-seeking suppression and previous work identified small-molecule NPYLR7 agonists that inhibit host-seeking and blood-feeding when fed to mosquitoes at high micromolar doses.
View Article and Find Full Text PDFACS Med Chem Lett
April 2024
Sanders Tri-Institutional Therapeutics Discovery Institute, 1230 York Ave, Box 122, New York, New York 10065, United States.
Eleven-nineteen leukemia (ENL) is an epigenetic reader protein that drives oncogenic transcriptional programs in acute myeloid leukemia (AML). AML is one of the deadliest hematopoietic malignancies, with an overall 5-year survival rate of 27%. The epigenetic reader activity of ENL is mediated by its YEATS domain that binds to acetyl and crotonyl marks on histone tails and colocalizes with promoters of actively transcribed genes that are essential for leukemia.
View Article and Find Full Text PDFbioRxiv
March 2024
Department of Biological Sciences, Columbia University, New York NY 10027, USA.
Female mosquitoes can spread disease-causing pathogens when they bite humans to obtain blood nutrients required for egg production. Following a complete blood meal, host-seeking is suppressed until eggs are laid. Neuropeptide Y-like Receptor 7 (NPYLR7) plays a role in endogenous host-seeking suppression and previous work identified small molecule NPYLR7 agonists that suppress host-seeking and blood feeding when fed to mosquitoes at high micromolar doses.
View Article and Find Full Text PDFMol Metab
December 2023
Division of Gastroenterology & Hepatology, Joan & Sanford I. Weill Department of Medicine, Weill Cornell Medical College, New York, NY 10065, USA; Division of Gastroenterology, Hepatology and Endoscopy, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA. Electronic address:
ACS Bio Med Chem Au
December 2023
Schrödinger, Inc., 1540 Broadway, 24th Floor, New York, New York 10036, United States.
Lpd (lipoamide dehydrogenase) in (Mtb) is required for virulence and is a genetically validated tuberculosis (TB) target. Numerous screens have been performed over the last decade, yet only two inhibitor series have been identified. Recent advances in large-scale virtual screening methods combined with make-on-demand compound libraries have shown the potential for finding novel hits.
View Article and Find Full Text PDFJ Am Chem Soc
January 2024
Tri-Institutional PhD Program in Chemical Biology, New York, New York 10021, United States.
Helicases, classified into six superfamilies, are mechanoenzymes that utilize energy derived from ATP hydrolysis to remodel DNA and RNA substrates. These enzymes have key roles in diverse cellular processes, such as translation, ribosome assembly, and genome maintenance. Helicases with essential functions in certain cancer cells have been identified, and helicases expressed by many viruses are required for their pathogenicity.
View Article and Find Full Text PDFNat Microbiol
June 2023
Laboratory of Retrovirology, The Rockefeller University, New York, NY, USA.
Human monoclonal antibodies (mAbs) that target the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike protein have been isolated from convalescent individuals and developed into therapeutics for SARS-CoV-2 infection. However, therapeutic mAbs for SARS-CoV-2 have been rendered obsolete by the emergence of mAb-resistant virus variants. Here we report the generation of a set of six human mAbs that bind the human angiotensin-converting enzyme-2 (hACE2) receptor, rather than the SARS-CoV-2 spike protein.
View Article and Find Full Text PDFJ Chem Inf Model
May 2023
Schrödinger, Inc., 1540 Broadway, 24th Floor, New York, New York 10036, United States.
In the hit identification stage of drug discovery, a diverse chemical space needs to be explored to identify initial hits. Contrary to empirical scoring functions, absolute protein-ligand binding free-energy perturbation (ABFEP) provides a theoretically more rigorous and accurate description of protein-ligand binding thermodynamics and could, in principle, greatly improve the hit rates in virtual screening. In this work, we describe an implementation of an accurate and reliable ABFEP method in FEP+.
View Article and Find Full Text PDFJ Chem Inf Model
May 2023
Tri-Institutional Therapeutics Discovery Institute, New York, New York 10021, United States.
Free energy perturbation is a computational technique that can be used to predict how small changes to an inhibitor structure will affect the binding free energy to its target. In this paper, we describe the utility of free energy perturbation with FEP+ in the hit-to-lead stage of a drug discovery project targeting soluble adenyl cyclase. The project was structurally enabled by X-ray crystallography throughout.
View Article and Find Full Text PDFStructure
May 2023
Department of Structural Biology, Van Andel Institute, 333 Bostwick Avenue NE, Grand Rapids, MI 49503, USA. Electronic address:
The human UBR5 is a single polypeptide chain homology to E6AP C terminus (HECT)-type E3 ubiquitin ligase essential for embryonic development in mammals. Dysregulated UBR5 functions like an oncoprotein to promote cancer growth and metastasis. Here, we report that UBR5 assembles into a dimer and a tetramer.
View Article and Find Full Text PDFFront Physiol
March 2023
Department of Pharmacology, Weill Cornell Medicine, New York, NY, United States.
[This corrects the article DOI: 10.3389/fphys.2022.
View Article and Find Full Text PDFNat Commun
February 2023
Department of Pharmacology, Weill Cornell Medicine, New York, NY, USA.
Nearly half of all pregnancies are unintended; thus, existing family planning options are inadequate. For men, the only choices are condoms and vasectomy, and most current efforts to develop new contraceptives for men impact sperm development, meaning that contraception requires months of continuous pretreatment. Here, we provide proof-of-concept for an innovative strategy for on-demand contraception, where a man would take a birth control pill shortly before sex, only as needed.
View Article and Find Full Text PDFJ Med Chem
January 2023
Department of Microbiology & Immunology, Weill Cornell Medicine, 1300 York Ave., New York, New York 10065, United States.
J Med Chem
November 2022
Tri-Institutional Therapeutics Discovery Institute, New York, New York 10021, United States.
Soluble adenylyl cyclase (sAC: ADCY10) is an enzyme involved in intracellular signaling. Inhibition of sAC has potential therapeutic utility in a number of areas. For example, sAC is integral to successful male fertility: sAC activation is required for sperm motility and ability to undergo the acrosome reaction, two processes central to oocyte fertilization.
View Article and Find Full Text PDFNature
November 2022
Jill Roberts Institute for Research in Inflammatory Bowel Disease, Weill Cornell Medicine, New York, NY, USA.
Emerging studies indicate that cooperation between neurons and immune cells regulates antimicrobial immunity, inflammation and tissue homeostasis. For example, a neuronal rheostat provides excitatory or inhibitory signals that control the functions of tissue-resident group 2 innate lymphoid cells (ILC2s) at mucosal barrier surfaces. ILC2s express NMUR1, a receptor for neuromedin U (NMU), which is a prominent cholinergic neuropeptide that promotes ILC2 responses.
View Article and Find Full Text PDFFront Physiol
September 2022
Department of Pharmacology, Weill Cornell Medicine, New York, NY, United States.
In mammalian cells, 10 different adenylyl cyclases produce the ubiquitous second messenger, cyclic adenosine monophosphate (cAMP). Amongst these cAMP-generating enzymes, bicarbonate (HCO )-regulated soluble adenylyl cyclase (sAC; ADCY10) is uniquely essential in sperm for reproduction. For this reason, sAC has been proposed as a potential therapeutic target for non-hormonal contraceptives for men.
View Article and Find Full Text PDFFront Mol Biosci
September 2022
Tri-Institutional Therapeutics Discovery Institute, New York, NY, United States.
Software for accurate prediction of protein-ligand binding affinity can be a key enabling tool for small molecule drug discovery. Free energy perturbation (FEP) is a computational technique that can be used to compute binding affinity differences between molecules in a congeneric series. It has shown promise in reliably generating accurate predictions and is now widely used in the pharmaceutical industry.
View Article and Find Full Text PDFCancer Discov
November 2022
Department of Cancer Biology, University of Pennsylvania, Philadelphia, Pennsylvania.
Unlabelled: The chromatin reader eleven-nineteen leukemia (ENL) has been identified as a critical dependency in acute myeloid leukemia (AML), but its therapeutic potential remains unclear. We describe a potent and orally bioavailable small-molecule inhibitor of ENL, TDI-11055, which displaces ENL from chromatin by blocking its YEATS domain interaction with acylated histones. Cell lines and primary patient samples carrying MLL rearrangements or NPM1 mutations are responsive to TDI-11055.
View Article and Find Full Text PDF