2 results match your criteria: "Tokyo Institute of Technology and SENTAN[Affiliation]"

A highly sensitive 27 MHz quartz crystal microbalance instrument with an automatic flow injection system was developed to obtain realistic minimal frequency noise (±0.05 Hz) and to obtain a stable signal baseline (±1 Hz/h) by controlling the temperature of each part in the quartz crystal microbalance (QCM) system using three Peltier devices with a resolution of ±0.001 °C and by optimizing the flow system to prevent fluctuation of the internal pressure of the QCM.

View Article and Find Full Text PDF

During the immobilization process of proteins onto an Au-surface of a 27 MHz quartz crystal microbalance (QCM) in aqueous solutions, apparent large frequency changes (DeltaF(water)) were observed compared with those in the air phase (DeltaF(air)) due to the interaction with surrounding water of proteins. On the basis of an energy-transfer model for the QCM, the apparent added mass in the aqueous solution [(-DeltaF(water))/(-DeltaF(air)) - 1] could be explained by frictional forces at the interface of proteins with aqueous solutions. When [(-DeltaF(water))/(-DeltaF(air)) - 1] values for various proteins were plotted against values relating to the friction (antimobility), such as values of the molecular weight divided by the sedimentation coefficient (Mw/s), the inverse of the diffusion coefficient (1/D), and the volume divided by the surface area (volume/surface area = apparent radius) of proteins, there were good linear correlations.

View Article and Find Full Text PDF