9 results match your criteria: "The University of Texas at Houston Graduate School of Biomedical Sciences[Affiliation]"
Neuroradiol J
February 2024
Department of Neuro-Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
Background And Objective: 200 kHz tumor treating fields (TTFields) is clinically approved for newly-diagnosed glioblastoma (nGBM). Because its effects on conventional surveillance MRI brain scans are equivocal, we investigated its effects on perfusion MRI (pMRI) brain scans.
Methods: Each patient underwent institutional standard pMRI: dynamic contrast-enhanced (DCE) and dynamic susceptibility contrast (DSC) pMRI at three time points: baseline, 2-, and 6-months on-adjuvant therapy.
J Cell Sci
September 2016
National Center for Macromolecular Imaging, Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX 77030, USA
Sickle cell disease is a destructive genetic disorder characterized by the formation of fibrils of deoxygenated hemoglobin, leading to the red blood cell (RBC) morphology changes that underlie the clinical manifestations of this disease. Using cryogenic soft X-ray tomography (SXT), we characterized the morphology of sickled RBCs in terms of volume and the number of protrusions per cell. We were able to identify statistically a relationship between the number of protrusions and the volume of the cell, which is known to correlate to the severity of sickling.
View Article and Find Full Text PDFJ Contemp Brachytherapy
June 2016
Department of Radiation Oncology, University of Texas MD Anderson Cancer Center, Houston, TX, USA.
Purpose: Computed tomography (CT)-based prostate post-implant dosimetry allows for definitive seed localization but is associated with high interobserver variation in prostate contouring. Currently, magnetic resonance imaging (MRI)-based post-implant dosimetry allows for accurate anatomical delineation but is limited due to inconsistent seed localization. Encapsulated contrast agent markers were previously proposed to overcome the seed localization limitation on MRI images by placing hyperintense markers adjacent to hypointense seeds.
View Article and Find Full Text PDFMed Phys
July 2016
Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, Texas 77030.
Purpose: For postimplant dosimetric assessment, computed tomography (CT) is commonly used to identify prostate brachytherapy seeds, at the expense of accurate anatomical contouring. Magnetic resonance imaging (MRI) is superior to CT for anatomical delineation, but identification of the negative-contrast seeds is challenging. Positive-contrast MRI markers were proposed to replace spacers to assist seed localization on MRI images.
View Article and Find Full Text PDFPLoS One
May 2016
Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas, United States of America; Cancer Biology Program, The University of Texas at Houston Graduate School of Biomedical Sciences, Houston, Texas, United States of America.
Epithelial ovarian cancer is a diverse molecular and clinical disease, yet standard treatment is the same for all subtypes. TP53 mutations represent a node of divergence in epithelial ovarian cancer histologic subtypes and may represent a therapeutic opportunity in subtypes expressing wild type, including most low-grade ovarian serous carcinomas, ovarian clear cell carcinomas and ovarian endometrioid carcinomas, which represent approximately 25% of all epithelial ovarian cancer. We therefore sought to investigate Nutlin-3a--a therapeutic which inhibits MDM2, activates wild-type p53, and induces apoptosis--as a therapeutic compound for TP53 wild-type ovarian carcinomas.
View Article and Find Full Text PDFPhys Med Biol
May 2014
The University of Texas at Houston Graduate School of Biomedical Sciences, 6767 Bertner Avenue, Houston, TX 77030, USA. Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030, USA.
Brachytherapy, a radiotherapy technique for treating prostate cancer, involves the implantation of numerous radioactive seeds into the prostate. While the implanted seeds can be easily identified on a computed tomography image, distinguishing the prostate and surrounding soft tissues is not as straightforward. Magnetic resonance imaging (MRI) offers superior anatomical delineation, but the seeds appear as dark voids and are difficult to identify, thus creating a conundrum.
View Article and Find Full Text PDFFor robust plan optimization and evaluation purposes, one needs a computationally efficient way to calculate dose distributions and dose-volume histograms (DVHs) under various changes in the variables associated with beam delivery and images. In this study, we report an approximate method for rapid calculation of dose when setup errors and anatomical changes occur during proton therapy. This fast dose approximation method calculates new dose distributions under various circumstances based on the prior knowledge of dose distribution from a reference setting.
View Article and Find Full Text PDFPhys Med Biol
August 2011
The University of Texas at Houston Graduate School of Biomedical Sciences, 6767 Bertner Avenue, S3.8344, Houston, TX 77030, USA.
Image guidance using implanted fiducial markers is commonly used to ensure accurate and reproducible target positioning in radiation therapy for prostate cancer. The ideal fiducial marker is clearly visible in kV imaging, does not perturb the therapeutic dose in the target volume and does not cause any artifacts on the CT images used for treatment planning. As yet, ideal markers that fully meet all three of these criteria have not been reported.
View Article and Find Full Text PDFImage-guided radiation therapy using implanted fiducial markers is a common solution for prostate localization to improve targeting accuracy. However, fiducials that are typically used for conventional photon radiotherapy cause large dose perturbations in patients who receive proton radiotherapy. A proposed solution has been to use fiducials of lower atomic number (Z) materials to minimize this effect in tissue, but the effects of these fiducials on dose distributions have not been quantified.
View Article and Find Full Text PDF