8 results match your criteria: "The University Oklahoma Health Sciences Center[Affiliation]"

Background: Despite being a mainstay for treating superficial bladder carcinoma and a promising agent for interstitial cystitis, the precise mechanism of Bacillus Calmette-Guerin (BCG) remains poorly understood. It is particularly unclear whether BCG is capable of altering gene expression beyond its well-recognized pro-inflammatory effects and how this relates to its therapeutic efficacy. The objective of this study was to determine differentially expressed genes in the mouse bladder following repeated intravesical BCG therapy.

View Article and Find Full Text PDF

Background: All four PARs are present in the urinary bladder, and their expression is altered during inflammation. In order to search for therapeutic targets other than the receptors themselves, we set forth to determine TFs downstream of PAR activation in the C57BL/6 urinary bladders.

Methods: For this purpose, we used a protein/DNA combo array containing 345 different TF consensus sequences.

View Article and Find Full Text PDF

Background: Tachykinins (TK), such as substance P, and their neurokinin receptors which are ubiquitously expressed in the human urinary tract, represent an endogenous system regulating bladder inflammatory, immune responses, and visceral hypersensitivity. Increasing evidence correlates alterations in the TK system with urinary tract diseases such as neurogenic bladders, outflow obstruction, idiopathic detrusor instability, and interstitial cystitis. However, despite promising effects in animal models, there seems to be no published clinical study showing that NK-receptor antagonists are an effective treatment of pain in general or urinary tract disorders, such as detrusor overactivity.

View Article and Find Full Text PDF

Background: In general, inflammation plays a role in most bladder pathologies and represents a defense reaction to injury that often times is two edged. In particular, bladder neurogenic inflammation involves the participation of mast cells and sensory nerves. Increased mast cell numbers and tryptase release represent one of the prevalent etiologic theories for interstitial cystitis and other urinary bladder inflammatory conditions.

View Article and Find Full Text PDF

Background: Protease-activated receptors (PAR) are present in the urinary bladder, and their expression is altered in response to inflammation. PARs are a unique class of G protein-coupled that carry their own ligands, which remain cryptic until unmasked by proteolytic cleavage. Although the canonical signal transduction pathway downstream of PAR activation and coupling with various G proteins is known and leads to the rapid transcription of genes involved in inflammation, the effect of PAR activation on the downstream transcriptome is unknown.

View Article and Find Full Text PDF

Background: An organ such as the bladder consists of complex, interacting set of tissues and cells. Inflammation has been implicated in every major disease of the bladder, including cancer, interstitial cystitis, and infection. However, scanty is the information about individual detrusor and urothelium transcriptomes in response to inflammation.

View Article and Find Full Text PDF

Connective molecular pathways of experimental bladder inflammation.

Physiol Genomics

November 2003

Oklahoma Medical Research Foundation, Arthritis and Immunology Research Program, Microarray Core Facility, The University Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73104, USA. .

Inflammation is an inherent response of the organism that permits its survival despite constant environmental challenges. The process normally leads to recovery from injury and to healing. However, if targeted destruction and assisted repair are not properly phased, chronic inflammation can result in persistent tissue damage.

View Article and Find Full Text PDF

LPS-sensory peptide communication in experimental cystitis.

Am J Physiol Renal Physiol

February 2002

Department of Physiology, The University Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73190, USA.

Stimulation of sensory nerves can lead to release of peptides such as substance P (SP) and consequently to neurogenic inflammation. We studied the role of bacterial lipopolysaccharide (LPS) in regulating SP-induced inflammation. Experimental cystitis was induced in female mice by intravesical instillation of SP, LPS, or fluorescein-labeled LPS.

View Article and Find Full Text PDF