1 results match your criteria: "The Third Faculty of Xi'an Research Institute of High Technology[Affiliation]"

Adversarial attacks that mislead deep neural networks (DNNs) into making incorrect predictions can also be implemented in the physical world. However, most of the existing adversarial camouflage textures that attack object detection models only consider the effectiveness of the attack, ignoring the stealthiness of adversarial attacks, resulting in the generated adversarial camouflage textures appearing abrupt to human observers. To address this issue, we propose a style transfer module added to an adversarial texture generation framework.

View Article and Find Full Text PDF