6 results match your criteria: "The Smith-Kettlewell Eye Research Institute San Francisco[Affiliation]"
Purpose: This paper describes recent progress on the "Crosswatch" project, a smartphone-based system developed for providing guidance to blind and visually impaired travelers at traffic intersections. Building on past work on Crosswatch functionality to help the user achieve proper alignment with the crosswalk and read the status of walk lights to know when it is time to cross, we outline the directions Crosswatch is now taking to help realize its potential for becoming a practical system: namely, augmenting computer vision with other information sources, including geographic information systems (GIS) and sensor data, and inferring the user's location much more precisely than is possible through GPS alone, to provide a much larger range of information about traffic intersections to the pedestrian.
Design/methodology/approach: The paper summarizes past progress on Crosswatch and describes details about the development of new Crosswatch functionalities.
Front Psychol
January 2013
The Smith-Kettlewell Eye Research Institute San Francisco, CA, USA.
Mapping the distinctions and interrelationships between imagery and working memory (WM) remains challenging. Although each of these major cognitive constructs is defined and treated in various ways across studies, most accept that both imagery and WM involve a form of internal representation available to our awareness. In WM, there is a further emphasis on goal-oriented, active maintenance, and use of this conscious representation to guide voluntary action.
View Article and Find Full Text PDFFront Hum Neurosci
October 2012
Smith-Kettlewell Brain Imaging Center, The Smith-Kettlewell Eye Research Institute San Francisco, CA, USA.
With all the wealth of scientific activities, there remains a certain stigma associated with careers in science, as a result of the inevitable concentration on narrow specializations that are inaccessible to general understanding. Enhancement of the process of scientific learning remains a challenge, particularly in the school setting. While direct explanation seems the best approach to expedite learning any specific subject, it is well known that the ability to deeply absorb facts and concepts is greatly enhanced by placing them in a broader context of relevance to the issues of everyday life and to the larger goals of improvement of the quality of life and advancement to a more evolved society as a whole.
View Article and Find Full Text PDFFront Syst Neurosci
July 2011
The Smith-Kettlewell Eye Research Institute San Francisco, CA, USA.
Although brain imaging methods are highly effective for localizing the effects of neural activation throughout the human brain in terms of the blood oxygenation level dependent (BOLD) response, there is currently no way to estimate the underlying neural signal dynamics in generating the BOLD response in each local activation region (except for processes slower than the BOLD time course). Knowledge of the neural signal is critical if spatial mapping is to progress to the analysis of dynamic information flow through the cortical networks as the brain performs its tasks. We introduce an analytic approach that provides a new level of conceptualization and specificity in the study of brain processing by non-invasive methods.
View Article and Find Full Text PDFInt J Artif Intell Tools
June 2009
The Smith-Kettlewell Eye Research Institute San Francisco, California 94115, USA
We describe a wayfinding system for blind and visually impaired persons that uses a camera phone to determine the user's location with respect to color markers, posted at locations of interest (such as offices), which are automatically detected by the phone. The color marker signs are specially designed to be detected in real time in cluttered environments using computer vision software running on the phone; a novel segmentation algorithm quickly locates the borders of the color marker in each image, which allows the system to calculate how far the marker is from the phone. We present a model of how the user's scanning strategy (i.
View Article and Find Full Text PDFProc IEEE Comput Soc Conf Comput Vis Pattern Recognit
January 2008
The Smith-Kettlewell Eye Research Institute San Francisco, CA 94115.
Urban intersections are the most dangerous parts of a blind or visually impaired person's travel. To address this problem, this paper describes the novel "Crosswatch" system, which uses computer vision to provide information about the location and orientation of crosswalks to a blind or visually impaired pedestrian holding a camera cell phone. A prototype of the system runs on an off-the-shelf Nokia N95 camera phone in real time, which automatically takes a few images per second, analyzes each image in a fraction of a second and sounds an audio tone when it detects a crosswalk.
View Article and Find Full Text PDF