17,852 results match your criteria: "The Scripps Research Institute.[Affiliation]"

Integrative proteomics identifies a conserved Aβ amyloid responsome, novel plaque proteins, and pathology modifiers in Alzheimer's disease.

Cell Rep Med

August 2024

Department of Pharmacology and Chemical Biology, School of Medicine, Emory University, Atlanta, GA, USA; Department of Neurology, School of Medicine, Emory University, Atlanta, GA, USA; Goizueta Brain Health Institute and Alzheimer's Disease Research Center, Emory University School of Medicine, Atlanta, GA, USA; Center for Neurodegenerative Disease Center, Emory University School of Medicine, Atlanta, GA, USA. Electronic address:

Alzheimer's disease (AD) is a complex neurodegenerative disorder that develops over decades. AD brain proteomics reveals vast alterations in protein levels and numerous altered biologic pathways. Here, we compare AD brain proteome and network changes with the brain proteomes of amyloid β (Aβ)-depositing mice to identify conserved and divergent protein networks with the conserved networks identifying an Aβ amyloid responsome.

View Article and Find Full Text PDF

Defective endomembrane dynamics in Rab27a deficiency impairs nucleic acid sensing and cytokine secretion in immune cells.

Cell Rep

August 2024

Department of Molecular and Cellular Biology, Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037, USA. Electronic address:

Endosomal Toll-like receptors (eTLRs) are essential for the sensing of non-self through RNA and DNA detection. Here, using spatiotemporal analysis of vesicular dynamics, super-resolution microscopy studies, and functional assays, we show that endomembrane defects associated with the deficiency of the small GTPase Rab27a cause delayed eTLR ligand recognition, defective early signaling, and impaired cytokine secretion. Rab27a-deficient neutrophils show retention of eTLRs in amphisomes and impaired ligand internalization.

View Article and Find Full Text PDF

Development of caspase-3-selective activity-based probes for PET imaging of apoptosis.

EJNMMI Radiopharm Chem

August 2024

Molecular Imaging and Radiology, University of Antwerp, Universiteitsplein 1, 2610, Wilrijk, Antwerp, Belgium.

Background: The cysteine-aspartic acid protease caspase-3 is recognized as the main executioner of apoptosis in cells responding to specific extrinsic and intrinsic stimuli. Caspase-3 represents an interesting biomarker to evaluate treatment response, as many cancer therapies exert their effect by inducing tumour cell death. Previously developed caspase-3 PET tracers were unable to reach routine clinical use due to low tumour uptake or lack of target selectivity, which are two important requirements for effective treatment response evaluation in cancer patients.

View Article and Find Full Text PDF

The continued evolution of SARS-CoV-2 variants capable of subverting vaccine and infection-induced immunity suggests the advantage of a broadly protective vaccine against betacoronaviruses (β-CoVs). Recent studies have isolated monoclonal antibodies (mAbs) from SARS-CoV-2 recovered-vaccinated donors capable of neutralizing many variants of SARS-CoV-2 and other β-CoVs. Many of these mAbs target the conserved S2 stem region of the SARS-CoV-2 spike protein, rather the receptor binding domain contained within S1 primarily targeted by current SARS-CoV-2 vaccines.

View Article and Find Full Text PDF

osteoclast differentiation enhanced by hepatocyte supernatants from high-fat diet mice.

Biochem Biophys Rep

September 2024

Laboratory of Endocrinology and Metabolism, Department of Endocrinology, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China.

Non-alcoholic fatty liver disease (NAFLD) is associated with abnormal bone metabolism, potentially mediated by elevated levels of proinflammatory cytokines such as tumor necrosis factor alpha (TNF-ɑ) and interleukin 6 (IL-6). This study aims to investigate the direct regulatory effects of liver tissues on osteoblast and osteoclast functions , focusing on the liver-bone axis in NAFLD. Twelve-week-old C57BL/6 mice were fed either a control diet or a high-fat diet (HFD) for 12 weeks.

View Article and Find Full Text PDF

Ongoing viral transcription from the reservoir of HIV-1 infected long-lived memory CD4 T cells presents a barrier to cure and associates with poorer health outcomes for people living with HIV, including chronic immune activation and inflammation. We previously reported that didehydro-cortistatin A (dCA), an HIV-1 Tat inhibitor, blocks HIV-1 transcription. Here, we examine the impact of dCA on host immune CD4 T-cell transcriptional and epigenetic states.

View Article and Find Full Text PDF

Macroautophagy is a conserved cellular degradation pathway that, upon upregulation, confers resilience toward various stress conditions, including protection against proteotoxicity associated with neurodegenerative diseases, leading to cell survival. Monitoring autophagy regulation in living cells is important to understand its role in physiology and pathology, which remains challenging. Here, we report that when HaloTag is expressed within a cell of interest and reacts with tetramethylrhodamine (TMR; its ligand attached to a fluorophore), the rate of fluorescent TMR-HaloTag conjugate accumulation in autophagosomes and lysosomes, observed by fluorescence microscopy, reflects the rate of autophagy.

View Article and Find Full Text PDF

Most of the mitochondria proteome is nuclear-encoded, synthesized by cytoplasmic ribosomes, and targeted to mitochondria post-translationally. However, a subset of mitochondrial-targeted proteins is imported co-translationally, although the molecular mechanisms governing this process remain unclear. We employ cellular cryo-electron tomography to visualize interactions between cytoplasmic ribosomes and mitochondria in .

View Article and Find Full Text PDF

BONCAT (Biorthogonal noncanonical amino acid tagging) is a labeling strategy that covalently adds a biotin-alkyne (BA) to methionine analogs via a click reaction. When methionine analogs are incorporated into a proteome, enrichment of the BA-labeled proteins allows the detection of newly synthesized proteins (NSP) by mass spectrometry. We previously reported that using our Direct Detection of Biotin-containing Tags (DidBIT) strategy, protein identifications and confidence are increased by enriching for BA-peptides instead of BA-proteins.

View Article and Find Full Text PDF

Pre-B cell receptor acts as a selectivity switch for galectin-1 at the pre-B cell surface.

Cell Rep

August 2024

Laboratoire d'Ingénierie des Systèmes Macromoléculaires (LISM UMR7255), Institut de Microbiologie de la Méditerranée, Institut de Microbiologie, Bioénergies et Biotechnologies, CNRS, Aix-Marseille University, Marseille, France. Electronic address:

Galectins are glycan-binding proteins translating the sugar-encoded information of cellular glycoconjugates into physiological activities, including immunity, cell migration, and signaling. Galectins also interact with non-glycosylated partners in the extracellular milieu, among which the pre-B cell receptor (pre-BCR) during B cell development. How these interactions might interplay with the glycan-decoding function of galectins is unknown.

View Article and Find Full Text PDF

Recent development of SARS-CoV-2 spike mRNA vaccines to control the pandemic is a breakthrough in the field of vaccine development. mRNA vaccines are generally formulated with lipid nanoparticles (LNPs) which are composed of several lipids with specific ratios; however, they generally lack selective delivery. To develop a selective delivery method for mRNA vaccine formulation, we reported here the synthesis of polymeric nanoparticles (PNPs) composed of a guanidine copolymer containing zwitterionic groups and a dendritic cell (DC)-targeted aryl-trimannoside ligand for encapsulation and selective delivery of an mRNA to dendritic cells.

View Article and Find Full Text PDF

Advanced Structure Analysis Reveals a Transient Portimine B Hydrate.

J Nat Prod

August 2024

Department of Chemistry and Biochemistry, University of North Carolina Wilmington, Wilmington, North Carolina 28409, United States.

Portimine B was isolated from an extract derived from the dinoflagellate , a known producer of the closely related portimine A. Initial molecular characterization studies of portimine B suggested an open tetrahydrofuranyl ring isomer, contrary to the intact ring moiety found in portimine A. In 2023, the Baran lab synthesized both portimines A and B suggesting that both macrocyclic analogs contained the intact tetrahydrofuranyl ring.

View Article and Find Full Text PDF

Glycoengineering in antigen-specific immunotherapies.

Curr Opin Chem Biol

August 2024

State Key Laboratory of Natural and Biomimetic Drugs, Chemical Biology Center, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, PR China. Electronic address:

Advances in immunotherapy have revolutionized modern medical care paradigms. However, many patients respond poorly to the current FDA-approved treatment regimens that primarily target protein-based antigens or checkpoints. Current progress in developing therapeutic strategies that target disease-associated glycans has pinpointed a new class of glycoimmune checkpoints that function orthogonally to the established protein-immune checkpoints.

View Article and Find Full Text PDF

Acoustic Stimulation to Improve Slow-Wave Sleep in Alzheimer's Disease: A Multiple Night At-Home Intervention.

Am J Geriatr Psychiatry

January 2025

Geriatric Psychiatry (LVDB, KV, LE, MV, MVDB), University Psychiatric Center KU Leuven, Leuven 3000, Belgium; Neuropsychiatry (LVDB, KV, LE, MV, MVDB), Research Group Psychiatry, Department of Neurosciences, Leuven Brain Institute, KU Leuven, Leuven 3000, Belgium. Electronic address:

Objectives: To investigate the efficacy of closed-loop acoustic stimulation (CLAS) during slow-wave sleep (SWS) to enhance slow-wave activity (SWA) and SWS in patients with Alzheimer's disease (AD) across multiple nights and to explore associations between stimulation, participant characteristics, and individuals' SWS response.

Design: A 2-week, open-label at-home intervention study utilizing the DREEM2 headband to record sleep data and administer CLAS during SWS.

Setting And Participants: Fifteen older patients with AD (6 women, mean age: 76.

View Article and Find Full Text PDF

Various approaches have been developed to target RNA and modulate its function with modes of action including binding and cleavage. Herein, we explored how small molecule binding is correlated with cleavage induced by heterobifunctional ribonuclease targeting chimeras (RiboTACs), where RNase L is recruited to cleave the bound RNA target, in a transcriptome-wide, unbiased fashion. Only a fraction of bound targets was cleaved by RNase L, induced by RiboTAC binding.

View Article and Find Full Text PDF

Cyclophilin inhibition as a strategy for the treatment of human disease.

Front Pharmacol

July 2024

Department of Immunology & Microbiology, The Scripps Research Institute, La Jolla, CA, United States.

Cyclophilins (Cyps), characterized as peptidyl-prolyl isomerases (PPIases), are highly conserved and ubiquitous, playing a crucial role in protein folding and cellular signaling. This review summarizes the biochemical pathways mediated by Cyps, including their involvement in pathological states such as viral replication, inflammation, and cancer progression, to underscore the therapeutic potential of Cyp inhibition. The exploration of Cyp inhibitors (CypI) in this review, particularly non-immunosuppressive cyclosporine A (CsA) derivatives, highlights their significance as therapeutic agents.

View Article and Find Full Text PDF

Total Synthesis Facilitates Reconstitution of the C-S Bond-Forming P450 in Griseoviridin Biosynthesis.

J Am Chem Soc

August 2024

Department of Chemistry, BioScience Research Collaborative, Rice University, Houston, Texas 77005, United States.

Griseoviridin is a group A streptogramin natural product from with broad-spectrum antibacterial activity. A hybrid polyketide-nonribosomal peptide, it comprises a 23-membered macrocycle, an embedded oxazole motif, and a macrolactone with a unique ene-thiol linkage. Recent analysis of the griseoviridin biosynthetic gene cluster implicated SgvP, a cytochrome P450 monooxygenase, in late-stage installation of the critical C-S bond.

View Article and Find Full Text PDF

The kinase Rio1 and a ribosome collision-dependent decay pathway survey the integrity of 18S rRNA cleavage.

PLoS Biol

April 2024

The Skaggs Graduate School of Chemical and Biological Sciences, The Scripps Research Institute, La Jolla, California, United States of America.

The 18S rRNA sequence is highly conserved, particularly at its 3'-end, which is formed by the endonuclease Nob1. How Nob1 identifies its target sequence is not known, and in vitro experiments have shown Nob1 to be error-prone. Moreover, the sequence around the 3'-end is degenerate with similar sites nearby.

View Article and Find Full Text PDF

Exploiting the Affimer platform against influenza A virus.

mBio

August 2024

School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom.

Unlabelled: Influenza A virus (IAV) is well known for its pandemic potential. While current surveillance and vaccination strategies are highly effective, therapeutic approaches are often short-lived due to the high mutation rates of IAV. Recently, monoclonal antibodies (mAbs) have emerged as a promising therapeutic approach, both against current strains and future IAV pandemics.

View Article and Find Full Text PDF

Assembly of the bacterial ribosome with circularly permuted rRNA.

Nucleic Acids Res

October 2024

Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA.

Co-transcriptional assembly is an integral feature of the formation of RNA-protein complexes that mediate translation. For ribosome synthesis, prior studies have indicated that the strict order of transcription of rRNA domains may not be obligatory during bacterial ribosome biogenesis, since a series of circularly permuted rRNAs are viable. In this work, we report the structural insights into assembly of the bacterial ribosome large subunit (LSU) based on cryo-EM density maps of intermediates that accumulate during in vitro ribosome synthesis using a set of circularly permuted (CiPer) rRNAs.

View Article and Find Full Text PDF

Ribosomal RNA modifications in prokaryotes have been sporadically studied, but there is a lack of a comprehensive picture of modification sites across bacterial phylogeny. Bacillus subtilis is a preeminent model organism for gram-positive bacteria, with a well-annotated and editable genome, convenient for fundamental studies and industrial use. Yet remarkably, there has been no complete characterization of its rRNA modification inventory.

View Article and Find Full Text PDF
Article Synopsis
  • Cells depend on antioxidants like glutathione (GSH) for survival, with its production controlled by the enzyme GCLC.
  • GSH is crucial for maintaining lipid levels in the liver, a key site for lipid production, and its deficiency affects fat storage and triglyceride levels.
  • The study reveals that GSH influences lipid abundance by regulating the transcription factor NRF2, linking antioxidant function to lipid metabolism.
View Article and Find Full Text PDF

Cellular and molecular characterization of immune responses elicited by influenza virus infection and seasonal vaccination have informed efforts to improve vaccine efficacy, breadth, and longevity. Here, we use negative stain electron microscopy polyclonal epitope mapping (nsEMPEM) to structurally characterize the humoral IgG antibody responses to hemagglutinin (HA) from human patients vaccinated with a seasonal quadrivalent flu vaccine or infected with influenza A viruses. Our data show that both vaccinated and infected patients had humoral IgGs targeting highly conserved regions on both H1 and H3 subtype HAs, including the stem and anchor, which are targets for universal influenza vaccine design.

View Article and Find Full Text PDF

Defining the subset of cellular factors governing SARS-CoV-2 replication can provide critical insights into viral pathogenesis and identify targets for host-directed antiviral therapies. While a number of genetic screens have previously reported SARS-CoV-2 host dependency factors, these approaches relied on utilizing pooled genome-scale CRISPR libraries, which are biased towards the discovery of host proteins impacting early stages of viral replication. To identify host factors involved throughout the SARS-CoV-2 infectious cycle, we conducted an arrayed genome-scale siRNA screen.

View Article and Find Full Text PDF