402 results match your criteria: "The Picower Institute for Learning and Memory[Affiliation]"
Curr Opin Behav Sci
October 2024
Department of Biology and The Picower Institute for Learning and Memory, MIT, Cambridge, MA.
New techniques for largescale neural recordings from diverse animals are reshaping comparative systems neuroscience. This growth necessitates fresh conceptual paradigms for comparing neural circuits and activity patterns. Here, we take a systems neuroscience approach to early neural evolution, emphasizing the importance of considering nervous systems as multiply modulated, continuous dynamical systems.
View Article and Find Full Text PDFAnesthesiology
December 2024
Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Boston, MA, USA.
Background: Fentanyl is a synthetic opioid that is widely used in anesthesiology, but its illicit use is rapidly increasing. At high doses fentanyl induces unconsciousness and muscle rigidity, the mechanisms of which are poorly understood. Since animal models are needed to study these effects, the aim of this study was to establish a rat model of fentanyl abuse and investigate the effects of repeated high-dose fentanyl injections on loss of righting reflex, heart rate, respiratory depression, muscle, and brain activity.
View Article and Find Full Text PDFNat Neurosci
December 2024
Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA.
Front Cell Infect Microbiol
December 2024
Division of Infectious Diseases, Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea.
Introduction: Coronavirus disease 2019 (COVID-19) alters the gut microbiome. This study aimed to assess the association between the disease severity of COVID-19 and changes in stool microbes through a seven-month follow-up of stool collection.
Methods: We conducted a multicentre, prospective longitudinal study of 58 COVID-19 patients and 116 uninfected controls.
Nat Commun
December 2024
Charité - Universitätsmedizin Berlin, Corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Microbiology, Infectious Diseases and Immunology, Hindenburgdamm 30, Berlin, Germany.
Tissue-resident immune cells, such as innate lymphoid cells, mediate protective or detrimental immune responses at barrier surfaces. Upon activation by stromal or epithelial cell-derived alarmins, group 2 innate lymphoid cells (ILC2s) are a rapid source of type 2 cytokines, such as IL-5. However, due to the overlap in effector functions, it remains unresolved whether ILC2s are an essential component of the type 2 response or whether their function can be compensated by other cells, such as T cells.
View Article and Find Full Text PDFNat Neurosci
December 2024
Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA.
Over the past decade, single-cell genomics technologies have allowed scalable profiling of cell-type-specific features, which has substantially increased our ability to study cellular diversity and transcriptional programs in heterogeneous tissues. Yet our understanding of mechanisms of gene regulation or the rules that govern interactions between cell types is still limited. The advent of new computational pipelines and technologies, such as single-cell epigenomics and spatially resolved transcriptomics, has created opportunities to explore two new axes of biological variation: cell-intrinsic regulation of cell states and expression programs and interactions between cells.
View Article and Find Full Text PDFSchizophrenia (Heidelb)
November 2024
Life and Environmental Sciences, University of Tsukuba, Tsukuba, Japan.
Synaptic development and functions have been hypothesized as crucial mechanisms of diverse neuropsychiatric disorders. Studies in past years suggest that mutations in the fragile X mental retardation 1 (FMR1) are associated with diverse mental disorders including intellectual disability, autistic spectrum disorder, and schizophrenia. In this study, we have examined genetical interactions between a select set of risk factor genes using fruit flies to find that dfmr1, the Drosophila homolog of the human FMR1 gene, exhibits functional interactions with DISC1 in synaptic development.
View Article and Find Full Text PDFNat Methods
November 2024
Department of Brain and Cognitive Sciences, MIT, Cambridge, MA, USA.
Behavioral neuroscience faces two conflicting demands: long-duration recordings from large neural populations and unimpeded animal behavior. To meet this challenge we developed ONIX, an open-source data acquisition system with high data throughput (2 GB s) and low closed-loop latencies (<1 ms) that uses a 0.3-mm thin tether to minimize behavioral impact.
View Article and Find Full Text PDFNat Commun
November 2024
McGovern Institute for Brain Research, MIT, Cambridge, MA, USA.
Proteins work together in nanostructures in many physiological contexts and disease states. We recently developed expansion revealing (ExR), which expands proteins away from each other, in order to support better labeling with antibody tags and nanoscale imaging on conventional microscopes. Here, we report multiplexed expansion revealing (multiExR), which enables high-fidelity antibody visualization of >20 proteins in the same specimen, over serial rounds of staining and imaging.
View Article and Find Full Text PDFCell Rep
November 2024
Department of Immunology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA. Electronic address:
Proc Natl Acad Sci U S A
October 2024
Department of Psychology, Vanderbilt University, Nashville, TN 37235.
Brain Sci
July 2024
Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD 21218, USA.
Decision-making is a cognitive process involving working memory, executive function, and attention. However, the connectivity of large-scale brain networks during decision-making is not well understood. This is because gaining access to large-scale brain networks in humans is still a novel process.
View Article and Find Full Text PDFCurr Opin Neurobiol
October 2024
Department of Biology and The Picower Institute for Learning and Memory, MIT, Cambridge, MA, 02139, USA. Electronic address:
Jellyfish comprise a diverse clade of free-swimming predators that arose prior to the Cambrian explosion. They play major roles in ocean ecosystems via a suite of complex foraging, reproductive, and defensive behaviors. These behaviors arise from decentralized, regenerative nervous systems composed of body parts that generate the appropriate part-specific behaviors autonomously following excision.
View Article and Find Full Text PDFbioRxiv
August 2024
The Picower Institute for Learning and Memory, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA.
The mammalian Prefrontal Cortex (PFC) has been suggested to modulate sensory information processing across multiple cortical regions via long-range axonal projections. These axonal projections arise from PFC subregions with unique brain-wide connectivity and functional repertoires, which may provide the architecture for modular feedback intended to shape sensory processing. Here, we used axonal tracing, axonal and somatic 2-photon calcium imaging, and chemogenetic manipulations in mice to delineate how projections from the Anterior Cingulate Cortex (ACA) and ventrolateral Orbitofrontal Cortex (ORB) of the PFC modulate sensory processing in the primary Visual Cortex (VISp) across behavioral states.
View Article and Find Full Text PDFSci Data
August 2024
Computational Cognitive & Systems Neuroscience Laboratory, Brain Science Institute, Korea Institute of Science and Technology, Seoul, 02792, Republic of Korea.
Responding to threats in the real world demands a sophisticated orchestration of freeze and flight behaviors dynamically modulated by the neural activity. While the medial prefrontal cortex-basolateral amygdala (mPFC-BLA) network is known to play a pivotal role in coordinating these responses, the mechanisms underlying its population dynamics remain vague. As traditional Pavlovian fear conditioning models fall short in encapsulating the breadth of natural escape behaviors, we introduce a novel dataset to bridge this gap, capturing the defensive strategies of mice against a spider robot in a natural-like environment.
View Article and Find Full Text PDFbioRxiv
July 2024
School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong, China.
Circular RNAs (circRNAs) are noncoding RNAs abundant in brain tissue, and many are derived from activity-dependent, linear mRNAs encoding for synaptic proteins, suggesting that circRNAs may directly or indirectly play a role in regulating synaptic development, plasticity, and function. However, it is unclear if the circular forms of these RNAs are similarly regulated by activity and what role these circRNAs play in developmental plasticity. Here, we employed transcriptome-wide analysis comparing differential expression of both mRNAs and circRNAs in juvenile mouse primary visual cortex (V1) following monocular deprivation (MD), a model of developmental plasticity.
View Article and Find Full Text PDFNeuron
August 2024
The Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA. Electronic address:
Every day, hundreds of thousands of people undergo general anesthesia. One hypothesis is that anesthesia disrupts dynamic stability-the ability of the brain to balance excitability with the need to be stable and controllable. To test this hypothesis, we developed a method for quantifying changes in population-level dynamic stability in complex systems: delayed linear analysis for stability estimation (DeLASE).
View Article and Find Full Text PDFFront Cell Neurosci
May 2024
Department of Biological Sciences, Lehigh University, Bethlehem, PA, United States.
Muscular dystrophies are a devastating class of diseases that result in a progressive loss of muscle integrity. Duchenne Muscular Dystrophy, the most prevalent form of Muscular Dystrophy, is due to the loss of functional Dystrophin. While much is known regarding destruction of muscle tissue in these diseases, much less is known regarding the synaptic defects that also occur in these diseases.
View Article and Find Full Text PDFBrain
June 2024
Turku Brain and Mind Center, Clinical Neurosciences, University of Turku, 20014 Turku, Finland.
Neuron
July 2024
Center for Theoretical Neuroscience, Columbia University, New York, NY, USA; Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY, USA; Department of Neuroscience, Columbia University, New York, NY, USA; Kavli Institute for Brain Science, Columbia University, New York, NY, USA. Electronic address:
The property of mixed selectivity has been discussed at a computational level and offers a strategy to maximize computational power by adding versatility to the functional role of each neuron. Here, we offer a biologically grounded implementational-level mechanistic explanation for mixed selectivity in neural circuits. We define pure, linear, and nonlinear mixed selectivity and discuss how these response properties can be obtained in simple neural circuits.
View Article and Find Full Text PDFNat Immunol
April 2024
The Picower Institute for Learning and Memory, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA.
The intricate relationship between immune dysregulation and neurodevelopmental disorders (NDDs) has been observed across the stages of both prenatal and postnatal development. In this Review, we provide a comprehensive overview of various maternal immune conditions, ranging from infections to chronic inflammatory conditions, that impact the neurodevelopment of the fetus during pregnancy. Furthermore, we examine the presence of immunological phenotypes, such as immune-related markers and coexisting immunological disorders, in individuals with NDDs.
View Article and Find Full Text PDFNature
March 2024
Department of Brain and Cognitive Sciences and the Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA, USA.
The glymphatic movement of fluid through the brain removes metabolic waste. Noninvasive 40 Hz stimulation promotes 40 Hz neural activity in multiple brain regions and attenuates pathology in mouse models of Alzheimer's disease. Here we show that multisensory gamma stimulation promotes the influx of cerebrospinal fluid and the efflux of interstitial fluid in the cortex of the 5XFAD mouse model of Alzheimer's disease.
View Article and Find Full Text PDFGenet Med
June 2024
Amsterdam Gastroenterology Endocrinology Metabolism, Amsterdam, The Netherlands; Amsterdam UMC location University of Amsterdam, Department of Clinical Chemistry, Laboratory Genetic Metabolic Diseases, Amsterdam, The Netherlands. Electronic address:
Purpose: The functionality of many cellular proteins depends on cofactors; yet, they have only been implicated in a minority of Mendelian diseases. Here, we describe the first 2 inherited disorders of the cytosolic iron-sulfur protein assembly system.
Methods: Genetic testing via genome sequencing was applied to identify the underlying disease cause in 3 patients with microcephaly, congenital brain malformations, progressive developmental and neurologic impairments, recurrent infections, and a fatal outcome.
Elife
February 2024
The Picower Institute for Learning and Memory, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, United States.
Basal forebrain cholinergic neurons modulate how organisms process and respond to environmental stimuli through impacts on arousal, attention, and memory. It is unknown, however, whether basal forebrain cholinergic neurons are directly involved in conditioned behavior, independent of secondary roles in the processing of external stimuli. Using fluorescent imaging, we found that cholinergic neurons are active during behavioral responding for a reward - even prior to reward delivery and in the absence of discrete stimuli.
View Article and Find Full Text PDFNat Neurosci
March 2024
Department of Psychology, Vanderbilt University, Nashville, TN, USA.
The mammalian cerebral cortex is anatomically organized into a six-layer motif. It is currently unknown whether a corresponding laminar motif of neuronal activity patterns exists across the cortex. Here we report such a motif in the power of local field potentials (LFPs).
View Article and Find Full Text PDF