69 results match your criteria: "The Parker Institute for Cancer Immunotherapy[Affiliation]"

Clinical trials evaluating chimeric antigen receptor (CAR) T-cell therapy in patients with malignant gliomas have shown some early promise in pediatric and adult patients. However, the long-term benefits and safety for patients remain to be established. The ultimate success of CAR T-cell therapy for malignant glioma will require the integration of an in-depth understanding of the immunology of the central nervous system (CNS) parenchyma with strategies to overcome the paucity and heterogeneous expression of glioma-specific antigens.

View Article and Find Full Text PDF

The goal of therapeutic cancer vaccines and immune checkpoint therapy (ICT) is to promote T cells with anti-tumor capabilities. Here, we compared mutant neoantigen (neoAg) peptide-based vaccines with ICT in preclinical models. NeoAg vaccines induce the most robust expansion of proliferating and stem-like PD-1TCF-1 neoAg-specific CD8 T cells in tumors.

View Article and Find Full Text PDF

Background: Glioblastoma (GBM) has a highly immunosuppressive tumor immune microenvironment (TIME), largely mediated by myeloid-derived suppressor cells (MDSCs). Here, we utilized a retroviral replicating vector (RRV) to deliver Interferon Regulatory Factor 8 (IRF8), a master regulator of type 1 conventional dendritic cell (cDC1) development, in a syngeneic murine GBM model. We hypothesized that RRV-mediated delivery of IRF8 could "reprogram" intratumoral MDSCs into antigen-presenting cells and thereby restore T-cell responses.

View Article and Find Full Text PDF

CD4 T cells can either enhance or inhibit tumour immunity. Although regulatory T cells have long been known to impede antitumour responses, other CD4 T cells have recently been implicated in inhibiting this response. Yet, the nature and function of the latter remain unclear.

View Article and Find Full Text PDF

NK cells express activating receptors that signal through ITAM-bearing adapter proteins. The phosphorylation of each ITAM creates binding sites for SYK and ZAP70 protein tyrosine kinases to propagate downstream signaling including the induction of influx. While all immature and mature human NK cells co-express SYK and ZAP70, clonally driven memory or adaptive NK cells can methylate genes and signaling is mediated exclusively using ZAP70.

View Article and Find Full Text PDF

Natural killer (NK) cells are innate lymphoid cells (ILCs) contributing to immune responses to microbes and tumors. Historically, their classification hinged on a limited array of surface protein markers. Here, we used single-cell RNA sequencing (scRNA-seq) and cellular indexing of transcriptomes and epitopes by sequencing (CITE-seq) to dissect the heterogeneity of NK cells.

View Article and Find Full Text PDF

The lack of comprehensive diagnostics and consensus analytical models for evaluating the status of a patient's immune system has hindered a wider adoption of immunoprofiling for treatment monitoring and response prediction in cancer patients. To address this unmet need, we developed an immunoprofiling platform that uses multiparameter flow cytometry to characterize immune cell heterogeneity in the peripheral blood of healthy donors and patients with advanced cancers. Using unsupervised clustering, we identified five immunotypes with unique distributions of different cell types and gene expression profiles.

View Article and Find Full Text PDF

IRF8-driven reprogramming of the immune microenvironment enhances anti-tumor adaptive immunity and reduces immunosuppression in murine glioblastoma.

bioRxiv

April 2024

Department of Neurological Surgery, University of California San Francisco, San Francisco, California; Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, California; The Parker Institute for Cancer Immunotherapy.

Background: Glioblastoma (GBM) has a highly immunosuppressive tumor immune microenvironment (TIME), largely mediated by myeloid-derived suppressor cells (MDSCs). Here, we utilized a retroviral replicating vector (RRV) to deliver Interferon Regulatory Factor 8 (IRF8), a master regulator of type 1 conventional dendritic cell (cDC1) development, in a syngeneic murine GBM model. We hypothesized that RRV-mediated delivery of IRF8 could "reprogram" intratumoral MDSCs into antigen-presenting cells (APCs) and thereby restore T-cell responses.

View Article and Find Full Text PDF

Challenges in the discovery of tumor-specific alternative splicing-derived cell-surface antigens in glioma.

Sci Rep

March 2024

Department of Neurological Surgery, University of California, San Francisco (UCSF), 1450 3Rd Street, Box 0520, San Francisco, CA, 94158, USA.

Despite advancements in cancer immunotherapy, solid tumors remain formidable challenges. In glioma, profound inter- and intra-tumoral heterogeneity of antigen landscape hampers therapeutic development. Therefore, it is critical to consider alternative sources to expand the repertoire of targetable (neo-)antigens and improve therapeutic outcomes.

View Article and Find Full Text PDF

The efficacy of chimeric antigen receptor T cell (CAR-T) therapy has been limited against brain tumors to date. CAR-T cells infiltrating syngeneic intracerebral SB28 EGFRvIII gliomas revealed impaired mitochondrial ATP production and a markedly hypoxic status compared with ones migrating to subcutaneous tumors. Drug screenings to improve metabolic states of T cells under hypoxic conditions led us to evaluate the combination of the AMPK activator metformin and the mTOR inhibitor rapamycin (Met+Rap).

View Article and Find Full Text PDF

The goal of therapeutic cancer vaccines and immune checkpoint therapy (ICT) is to eliminate cancer by expanding and/or sustaining T cells with anti-tumor capabilities. However, whether cancer vaccines and ICT enhance anti-tumor immunity by distinct or overlapping mechanisms remains unclear. Here, we compared effective therapeutic tumor-specific mutant neoantigen (NeoAg) cancer vaccines with anti-CTLA-4 and/or anti-PD-1 ICT in preclinical models.

View Article and Find Full Text PDF

Adaptation of HLA testing to characterize the cynomolgus macaque MHC polymorphisms and alloantibody signatures.

HLA

January 2024

Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA.

Nonhuman primates are the closest animal models to humans with respect to genetics and physiology. Consequently, a critical component of immunogenetics research relies on drawing inferences from the cynomolgus macaque to inform human trials. Despite the conserved organization of the Major Histocompatibility Complex (MHC) between cynomolgus macaques and humans, MHC genotyping of cynomolgus macaques is challenging due to high rates of copy number variants, duplications, and rearrangements, particularly at the MHC class I loci.

View Article and Find Full Text PDF

Genetic engineering of allogeneic cell therapeutics that fully prevents rejection by a recipient's immune system would abolish the requirement for immunosuppressive drugs or encapsulation and support large-scale manufacturing of off-the-shelf cell products. Previously, we generated mouse and human hypoimmune pluripotent (HIP) stem cells by depleting HLA class I and II molecules and overexpressing CD47 (B2MCIITACD47). To determine whether this strategy is successful in non-human primates, we engineered rhesus macaque HIP cells and transplanted them intramuscularly into four allogeneic rhesus macaques.

View Article and Find Full Text PDF

CD16 natural killer cells in bronchoalveolar lavage are associated with antibody-mediated rejection and chronic lung allograft dysfunction.

Am J Transplant

January 2023

Department of Medicine, University of California, San Francisco, California, USA; Medical Service, Veterans Affairs Health Care System, San Francisco, California, USA.

Acute and chronic rejections limit the long-term survival after lung transplant. Pulmonary antibody-mediated rejection (AMR) is an incompletely understood driver of long-term outcomes characterized by donor-specific antibodies (DSAs), innate immune infiltration, and evidence of complement activation. Natural killer (NK) cells may recognize DSAs via the CD16 receptor, but this complement-independent mechanism of injury has not been explored in pulmonary AMR.

View Article and Find Full Text PDF

Systems analysis of de novo mutations in congenital heart diseases identified a protein network in the hypoplastic left heart syndrome.

Cell Syst

November 2022

The Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, the Bakar Computational Health Sciences Institute, the Parker Institute for Cancer Immunotherapy, and the Department of Neurology, School of Medicine, University of California, San Francisco, 35 Medical Center Way, San Francisco, CA 94143, USA. Electronic address:

Despite a strong genetic component, only a few genes have been identified in congenital heart diseases (CHDs). We introduced systems analyses to uncover the hidden organization on biological networks of mutations in CHDs and leveraged network analysis to integrate the protein interactome, patient exomes, and single-cell transcriptomes of the developing heart. We identified a CHD network regulating heart development and observed that a sub-network also regulates fetal brain development, thereby providing mechanistic insights into the clinical comorbidities between CHDs and neurodevelopmental conditions.

View Article and Find Full Text PDF

Anophthalmia and microphthalmia (A/M) are rare birth defects affecting up to 2 per 10,000 live births. These conditions are manifested by the absence of an eye or reduced eye volumes within the orbit leading to vision loss. Although clinical case series suggest a strong genetic component in A/M, few systematic investigations have been conducted on potential genetic contributions owing to low population prevalence.

View Article and Find Full Text PDF

Background: We hypothesized that a gender difference in clinical response may exist to adjuvant CTLA4 blockade with ipilimumab versus high-dose IFNα (HDI). We investigated differences in candidate immune biomarkers in the circulation and tumor microenvironment (TME).

Patients And Methods: This gender-based analysis was nested within the E1609 trial that tested adjuvant therapy with ipilimumab 3 mg/kg (ipi3) and 10 mg/kg (ipi10) versus HDI in high risk resected melanoma.

View Article and Find Full Text PDF

Background: Long-term prognosis of WHO grade II, isocitrate dehydrogenase (IDH)-mutated low-grade glioma (LGG) is poor due to high risks of recurrence and malignant transformation into high-grade glioma. Immunotherapy strategies are attractive given the relatively intact immune system of patients with LGG and the slow tumor growth rate. However, accumulation of the oncometabolite D-2-hydroxyglutarate (D-2HG) in IDH-mutated gliomas leads to suppression of inflammatory pathways in the tumor microenvironment, thereby contributing to the 'cold' tumor phenotype.

View Article and Find Full Text PDF

Cancer Immunoediting in the Era of Immuno-oncology.

Clin Cancer Res

September 2022

Department of Dermatology, Yale School of Medicine, New Haven, Connecticut.

Basic science breakthroughs in T-cell biology and immune-tumor cell interactions ushered in a new era of cancer immunotherapy. Twenty years ago, cancer immunoediting was proposed as a framework to understand the dynamic process by which the immune system can both control and shape cancer and in its most complex form occurs through three phases termed elimination, equilibrium, and escape. During cancer progression through these phases, tumors undergo immunoediting, rendering them less immunogenic and more capable of establishing an immunosuppressive microenvironment.

View Article and Find Full Text PDF

Although interactions between inhibitory Ly49 receptors and their self-MHC class I ligands in C57BL/6 mice are known to limit NK cell proliferation during mouse CMV (MCMV) infection, we created a 36-marker mass cytometry (CyTOF) panel to investigate how these inhibitory receptors impact the NK cell response to MCMV in other phenotypically measurable ways. More than two thirds of licensed NK cells (i.e.

View Article and Find Full Text PDF

On the Twentieth Anniversary of Dendritic Cell Vaccines - Riding the Next Wave.

Cancer Res

March 2022

Center for Cellular Immunotherapies and The Parker Institute for Cancer Immunotherapy, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania.

In the mid 1990's, a convergence of discoveries in dendritic cell (DC) biology and tumor antigen identification led investigators to study DCs as adjuvants for cancer vaccines. On the twentieth anniversary of a seminal clinical study by Jacques Banchereau and colleagues, we revisit the key events that prompted the initial wave of DC vaccine clinical studies and lessons learned that, in our opinion, helped forge the path for the field that we now call immuno-oncology. It is essential to recall that prior to the discovery of immune checkpoint therapy and chimeric antigen receptor (CAR) T-cell therapy, skepticism prevailed regarding the potential therapeutic benefit of immunotherapies.

View Article and Find Full Text PDF

Immune checkpoint therapy (ICT) using antibody blockade of programmed cell death protein 1 (PD-1) or cytotoxic T-lymphocyte-associated protein 4 (CTLA-4) can provoke T cell-dependent antitumor activity that generates durable clinical responses in some patients. The epigenetic and transcriptional features that T cells require for efficacious ICT remain to be fully elucidated. Herein, we report that anti-PD-1 and anti-CTLA-4 ICT induce upregulation of the transcription factor BHLHE40 in tumor antigen-specific CD8+ and CD4+ T cells and that T cells require BHLHE40 for effective ICT in mice bearing immune-edited tumors.

View Article and Find Full Text PDF

Background: Melanoma of unknown primary (MUP) represents a poorly understood group of patients both clinically and immunologically. We investigated differences in prognosis and candidate immune biomarkers in patients with unknown compared with those with known primary melanoma enrolled in the E1609 adjuvant trial that tested ipilimumab at 3 and 10 mg/kg vs high-dose interferon-alfa (HDI).

Patients And Methods: MUP status was defined as initial presentation with cutaneous, nodal or distant metastasis without a known primary.

View Article and Find Full Text PDF