26 results match your criteria: "The National Institute of Engineering[Affiliation]"

Textiles are an integral part of daily life globally, but their widespread use leads to significant waste generation. Repurposing these discarded fabrics for energy harvesting offers a sustainable solution to both energy demand and textile waste management. In this study, Textile-based Triboelectric Nanogenerators (T-TENGs) were developed using recycled cloth as tribopositive layers and polyvinyl chloride (PVC) film as the tribonegative layer, with aluminum foil tape serving as electrodes.

View Article and Find Full Text PDF

A convenient, straightforward, and effective one-step reaction for the synthesis of a three-component compound of biologically relevant novel 2,4-diamino-5-(8-hydroxyquinolin-7-yl)-5H-chromeno[2,3-b] pyridine-3-carbonitrile derivatives was designed and synthesized. The synthesis was developed by the reaction between salicylaldehyde 1, 8-hydroxyquinoline 2, 2-aminopropene-1,1,3-tricarbonitrile 3, and the catalytic amount of triethylamine in ethanol at 78 °C. This methodology has many beneficial features, including the use of inexpensive and non-hazardous starting materials, single-flask reactions, optimized reaction conditions, the termination of intermediate isolation, easy workup, reducing organic waste products, being chromatography-free, and decreasing the reaction time along with quantitative yields with high functional group tolerance.

View Article and Find Full Text PDF

This study used smartphone captured RGB images of gooseberries to automatically sort into standard, premium, or rejected categories based on topology. Main challenges addressed include, separation of touching or overlapping fruits into individual entities and new method called 'TopoGeoFusion' that combines basic geometrical features with topology aware features computed from the fruits to assess the grade or maturity. Quality assessment helps in grading the fruit to determine market suitability and intelligent camera applications.

View Article and Find Full Text PDF

In the present work, the efficacy of waste glass as fillers in concrete for gamma-ray shielding has been studied. Glass fillers of 0, 15, 30, 45, and 60% concentrations have been incorporated into the concrete mixture. The attenuation measurements were performed using gamma spectrometer with NaI(Tl) detector at 511, 662, 1173, and 1332 keV gamma energies.

View Article and Find Full Text PDF

The shielding of gamma radiation is of the utmost importance in industries, such as nuclear power plants, medical imaging, and space exploration. For the purpose of shielding objects in such an environment, it is essential to design materials with flexibility as well as high shielding capability. In order to enhance the radiation attenuation effectiveness of polymers, such as polyvinyl alcohol (PVA), glass has been blended with varying percentages.

View Article and Find Full Text PDF

Herein, we have reported a red-emitting 4-methyl coumarin fused barbituric acid azo dye (4-MCBA) synthesized by conventional method. Density functional theory (DFT) studies of tautomer compounds were done using (B3LYP) with a basis set of 6-31G(d,p). NLO analysis has shown that tautomer has mean first-order hyperpolarisabilities (β) value of 1.

View Article and Find Full Text PDF

Herein, we report the synthesis and characterization of novel 1,3,4-oxadiazole derivatives, 2-methoxybenzyl 5-(4-chlorophenyl)-1,3,4-oxadiazole-2-carboxylate () (), and methoxybenzyl 5-(3-chlorophenyl)-1,3,4-oxadiazole-2-carboxylate () obtained through desulfurative cyclization reaction. The compound was crystallized, and its crystal structure was elucidated using single-crystal X-ray diffraction technique. The Hirshfeld surface analysis was carried out to analyze, visualize and globally appreciate the weak interactions involved in crystal packing.

View Article and Find Full Text PDF

In the context of escalating electronic waste (e-waste) generated by the rapid evolution of electronic devices, particularly smartphones/mobiles, the imperative for effective e-waste management to mitigate adverse environmental and health consequences has become increasingly apparent. Herein, novel mobile phone-based triboelectric nanogenerators (M-TENGs) are fabricated from discarded smartphone displays of eight different brands (B1-B8) for harvesting electrical energy. Analytical characterization techniques such as SEM and EDS are employed for morphological investigation.

View Article and Find Full Text PDF

In outer space, we find many types of radiations that are due to solar flares, radiation belt, cosmic rays, etc. We are fortunate enough to be protected from these radiations on the surface of the Earth, whereas in other celestial objects such as planets and satellites, without a protecting atmosphere, penetration of radiation that may be ionising or non-ionising is inevitable. Hence, studying radiation environment and its effect on such celestial objects is very important for establishing facilities such as satellites, payloads, vehicles and human exploration.

View Article and Find Full Text PDF

Reducing the effect of exposure to radiation in places such as radiation labs, nuclear reactors, radiotherapy facilities, industries involving radiation, etc., is essential for the health of radiation workers. In such cases materials having flexibility added with high attenuation coefficient of radiation is required for manufacturing wearables.

View Article and Find Full Text PDF

Triboelectric nanogenerators (TENGs) have emerged as a promising alternative for powering small-scale electronics without relying on traditional power sources, and play an important role in the development of the internet of things (IoTs). Herein, a low-cost, flexible polyvinyl alcohol (PVA)-based TENG (PVA-TENG) is reported to harvest low-frequency mechanical vibrations and convert them into electricity. PVA thin film is prepared by a simple solution casting technique and utilized to serve as the tribopositive material, polypropylene film as tribonegative, and aluminum foil as electrodes of the device.

View Article and Find Full Text PDF
Article Synopsis
  • The study explores how different foundation types (footings, pile groups, piled rafts) bear loads and transfer weight from buildings to the ground, especially focusing on their behavior in varying soil conditions.
  • Using advanced finite element analysis tools like PLAXIS 2D and GEO5, it examines how factors like soil type and surcharge influence load-bearing capacities and deformation.
  • Key findings indicate that sandy soils exhibit less horizontal deformation than clayey soils, and increasing pile thickness can reduce settlement and enhance the factor of safety significantly, stressing the importance of informed decision-making in foundation selection for engineering projects.
View Article and Find Full Text PDF

A sequence of novel 2-(4-benzoyl-2-methyl-phenoxy)-N-(3-chloro-2-oxo-4-phenyl-azetidin-1-yl)-acetamide analogues 9(a−n) were synthesized by multistep synthesis. The newly synthesized compounds were well characterized, and their antimicrobial activities were carried out by disc diffusion and broth dilution methods. Further, all the novel series of compounds (9a−n), were tested against a variety of bacterial and fungal strains in comparison to Ketoconazole, Chloramphenicol, and Amoxicillin as standard drugs, respectively.

View Article and Find Full Text PDF

Coumarin derivatives are proven for their therapeutic uses in several human diseases and disorders such as inflammation, neurodegenerative disorders, cancer, fertility, and microbial infections. Coumarin derivatives and coumarin-based scaffolds gained renewed attention for treating diabetes mellitus. The current decade witnessed the inhibiting potential of coumarin derivatives and coumarin-based scaffolds against α-glucosidase and α-amylase for the management of postprandial hyperglycemia.

View Article and Find Full Text PDF

Quantum K-means clustering method for detecting heart disease using quantum circuit approach.

Soft comput

May 2022

Electronics and Communication Engineering, The National Institute of Engineering, Manandavadi Road, Mysuru, Karnataka 570008 India.

The development of noisy intermediate- scale quantum computers is expected to signify the potential advantages of quantum computing over classical computing. This paper focuses on quantum paradigm usage to speed up unsupervised machine learning algorithms particularly the K-means clustering method. The main approach is to build a quantum circuit that performs the distance calculation required for the clustering process.

View Article and Find Full Text PDF

The most commonly accepted hypothesis of Alzheimer's disease (AD) is the amyloid hypothesis caused due to formation of accumulation of Aβ42 isoform, which leads to neurodegeneration. In this regard, presenilin-1 (PSEN-1) and -2 (PSEN-2) proteins play a crucial role by altering the amyloid precursor protein (APP) metabolism, affecting γ-secretase protease secretion, finally leading to the increased levels of Aβ. In the absence of reported commercial pharmacotherapeutic agents targeting presenilins, we aim to propose benzophenone integrated derivatives (BIDs) as the potential inhibitors of presenilin proteins through in silico approach.

View Article and Find Full Text PDF

A series of 1,3,4-oxadiazole bridged pyrazole/isoxazole bearing quinoline derivatives has been designed and synthesized by a clean and convenient method. Structures of the newly synthesized compounds have been confirmed by FTIR, H and C NMR, and HRMS spectral data. The titled compounds have been evaluated for their molecular docking guided antimicrobial and anti-inflammatory activity.

View Article and Find Full Text PDF

Anti-neoplastic pharmacophore benzophenone-1 coumarin (BP-1C) targets JAK2 to induce apoptosis in lung cancer.

Apoptosis

February 2022

Molecular Biomedicine Laboratory, Postgraduate Department of Studies and Research in Biotechnology, Sahyadri Science College, Kuvempu University, Shivamogga, Karnataka, 577203, India.

Reigning of the abnormal gene activation associated with survival signalling in lung cancer leads to the anomalous growth and therapeutic failure. Targeting specific cell survival signalling like JAK2/STAT3 nexus has become a major focus of investigation to establish a target specific treatment. The 2-bromobenzoyl-4-methylphenoxy-acetyl hydra acetyl Coumarin (BP-1C), is new anti-neoplastic agent with apoptosis inducing capacity.

View Article and Find Full Text PDF

In this study, we propose our novel benzophenone-coumarin derivatives (BCDs) as potent inhibitors of the RNA-dependent RNA polymerase (RdRp) of SARS-CoV-2 virus, one of the key targets that are involved in the viral genome replication. We aim to evaluate the antiviral potential of BCDs against this protein target, which involves molecular docking simulations, druglikeliness and pharmacokinetic evaluations, PASS analysis, molecular dynamics simulations, and computing binding free energy. Out of all the BCDs screened through these parameters, BCD-8 was found to be the most efficient and potent inhibitor of SARS-CoV-2 RdRp.

View Article and Find Full Text PDF
Article Synopsis
  • - The study presents a new 2D GNR-CoB composite used for electrochemical sensing and degrading malachite green (MG), with strong analytical performance shown through various imaging and testing methods.
  • - The modified pencil graphite electrode with the composite achieved an impressive limit of detection (LOD) of 1.92 nM and demonstrated a high sensitivity, allowing effective detection of MG in real samples like green peas and lady's fingers.
  • - Additionally, the 2D GNR-CoB composite exhibited excellent photocatalytic degradation of MG, achieving a 91.28% efficiency by generating reactive radicals under visible light, with a proposed mechanism for this degradation process being discussed.
View Article and Find Full Text PDF

The spectroscopic studies of medium and high Z impurities have been the subject of interest in fusion research due to their role in mitigating plasma disruption and reducing heat load on the plasma facing components. Line emissions from these impurities provide the rotation velocity and ion temperature measurements along with the understanding of the overall impurity behavior in plasma. In the Aditya-U tokamak, the spatially resolved Ar II line emissions have been observed using a high resolution multi-track spectroscopic diagnostic consisting of a 1 m Czerny-Turner spectrometer coupled with a charge coupled device (CCD) detector using seven lines of sight viewing plasma tangentially along the toroidal direction.

View Article and Find Full Text PDF

It is of interest to document the design, synthesis, docking, Hirshfeld surface analysis and DFT calculations of 2-methylxanthen-9-with the FtsZ protein (PDB ID: 3VOB) from Staphylococcus aureus for antimicrobial applications. We report the quantitative structure function data in this context.

View Article and Find Full Text PDF

This paper aims to study the determinants of the Lean Service System (LSS) on the Operational Performance (OP) of India's mail service in the National Sorting Hub (NSH), Mangaluru, Karnataka, the southern part of India. Measuring the OP in mail service is a big challenge in the postal service industry. Hence, we have conducted a survey, and 150 usable data has measured the impact of Lean Service Practices (LSP), Lean Workplace Environment Practices (LWEP), and Lean Social Practices (LSoP) on the OP.

View Article and Find Full Text PDF

The synthesis and antiproliferative effect of a series of quinoline and thiazole containing coumarin analogs 12a-d and 13a-f respectively, on mice leukemic cells was performed. The chemical structures of newly synthesized compounds were confirmed by IR, H NMR, C NMR and mass spectral analysis. The result indicates that, 7-methoxy-2-oxo-2H-chromene-3-carboxylic acid [4-(4-methoxy-phenyl)-thiazol-2-yl]-amide (13f) showed potent activity against EAC and DLA cells in MTT (15.

View Article and Find Full Text PDF

A tumoural angiogenic gateway blocker, Benzophenone-1B represses the HIF-1α nuclear translocation and its target gene activation against neoplastic progression.

Biochem Pharmacol

February 2017

Molecular Biomedicine Laboratory, Postgraduate Department of Studies and Research in Biotechnology, Sahyadri Science College (Autonomous), Kuvempu University, Shivamogga 577203, Karnataka, India. Electronic address:

Hypoxia is an important module in all solid tumours to promote angiogenesis, invasion and metastasis. Stabilization and subsequent nuclear localization of HIF-1α subunits result in the activation of tumour promoting target genes such as VEGF, MMPs, Flt-1, Ang-1 etc. which plays a pivotal role in adaptation of tumour cells to hypoxia.

View Article and Find Full Text PDF