1,337 results match your criteria: "The National Dendrimer & Nanotechnology Center[Affiliation]"
J Biol Methods
October 2024
Department of Biochemistry, Sismanogleio Hospital, Athens 15126, Greece.
Background: Nanotechnology has emerged as a promising field for the diagnosis, monitoring, and treatment of respiratory tract infections (RTIs). By leveraging the unique properties of nanoscale delivery systems, nanotechnology can significantly enhance the selectivity and efficacy of antimicrobials, thereby reducing off-target effects.
Objective: This review explores the development and application of targeted nanosystems in combating viral, bacterial, and fungal RTIs.
Adv Mater
January 2025
Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife, KY16 9ST, UK.
The development of narrowband emissive, bright, and stable solution-processed organic light-emitting diodes (SP-OLEDs) remains a challenge. Here, a strategy is presented that merges within a single emitter a TADF sensitizer responsible for exciton harvesting and an MR-TADF motif that provides bright and narrowband emission. This emitter design also shows strong resistance to aggregate formation and aggregation-cause quenching.
View Article and Find Full Text PDFPharmaceutics
November 2024
The National Dendrimer & Nanotechnology Center, NanoSynthons LLC, Mt. Pleasant, MI 48858, USA.
This perspective begins with an overview of the major impact that the dendron, dendrimer, and dendritic state (DDDS) discovery has made on traditional polymer science. The entire DDDS technology is underpinned by an unprecedented new polymerization strategy referred to as step-growth, amplification-controlled polymerization (SGACP). This new SGACP paradigm allows for routine polymerization of common monomers and organic materials into precise monodispersed, dendritic macromolecules (i.
View Article and Find Full Text PDFAdv Healthc Mater
January 2025
Shanghai Key Laboratory of Hydrogen Science & Center of Hydrogen Science, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China.
Poor tumor penetration is the major predicament of nanomedicines that limits their anticancer efficacy. The dense extracellular matrix (ECM) in the tumor is one of the major barriers against the deep penetration of nanomedicines. In this work, a slimming/excavating strategy is proposed for enhanced intratumoral penetration based on an acid-disassemblable nanomicelles-assembled nanomedicine and the NO-mediated degradation of ECM.
View Article and Find Full Text PDFAdv Sci (Weinh)
January 2025
Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China.
Ocular surface chemical injuries often result in permanent visual impairment and necessitate complex, long-term treatments. Immediate and extensive irrigation serves as the first-line intervention, followed by various therapeutic protocols applied throughout different stages of the condition. To optimize outcomes, conventional regimens increasingly incorporate biological agents and surgical techniques.
View Article and Find Full Text PDFJ Mater Chem B
January 2025
National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China.
Microtia profoundly affects patients' appearance and psychological well-being. Tissue engineering ear cartilage scaffolds have emerged as the most promising solution for ear reconstruction. However, constructing tissue engineering ear cartilage scaffolds requires multiple passaging of chondrocytes, resulting in their dedifferentiation and loss of their special phenotypes and functions.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
Department of Cariology and Endodontology, Peking University School and Hospital of Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices & Beijing Key Laboratory of Digital Stomatology & NHC Key Laboratory of Digital Stomatology & NMPA Key Laboratory for Dental Materials, Beijing 100081, China.
Front Oncol
December 2024
Department of Radiation Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen, China.
Purpose: This study aimed to describe the trends, current hotspots, and future directions in boron neutron capture therapy (BNCT) through a bibliometric analysis.
Methods: Articles related to BNCT published before 2023-12-31 were retrieved from the Web of Science Core Collection database. VOSviewer, R, and CiteSpace were used for bibliometric analysis and visualization.
Pharm Nanotechnol
December 2024
Institute for Medical Research, University of Sharjah, Sharjah United Arab Emirates.
Alzheimer's disease (AD) is an irreversible brain disorder that led to memory loss and disrupts daily life. Earlier strategies to treat AD such as acetylcholinesterase inhibitor (AChEI) drugs are not showing effectiveness due to the inability to cross the blood-brain barrier. Moreover, traditional AChEI provides limited efficacy in terms of bioavailability and solubility for treating AD treatment.
View Article and Find Full Text PDFJ Nanobiotechnology
December 2024
College of Stomatology, Chongqing Medical University, 426#Songshibei Road, Yubei District, Chongqing, 401147, China.
Background: The multi-biological barriers present in the inflammatory microenvironment severely limit the targeted aggregation of anti-inflammatory drugs in the lesion area. However, conventional responsive drug carriers inevitably come into contact with several pro-responsive stimulatory mediators simultaneously, leading to premature drug release and loss of most therapeutic effects. Breaking through the multi-level barriers of the inflammatory microenvironment is essential to improve the enrichment and bioavailability of drugs.
View Article and Find Full Text PDFPolymers (Basel)
November 2024
Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, Kaohsiung 807, Taiwan.
The in situ monitoring of dynamic covalent macromolecular boronate esters represents a difficult task. In this report, we present an in situ method using fluoride coordination and B NMR spectroscopy to determine the amount of boronate esters in a mixture of boronic acids and cis-diols. With fluoride coordination, the boronic acid and boronate esters afforded trifluoroborate and fluoroboronate esters, giving identical resonances at 3 and 9 ppm in the B NMR spectra.
View Article and Find Full Text PDFJ Thorac Dis
November 2024
Department of Thoracic Surgery, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, China.
Background And Objective: Lung cancer continues to be the leading cause of cancer-related deaths globally. Non-small cell lung cancer (NSCLC) accounts for approximately 85% of lung cancer cases. Although targeted therapies and immune checkpoint inhibitors have improved clinical outcomes for NSCLC patients, primary and acquired resistance remain significant obstacles to effective treatment.
View Article and Find Full Text PDFDent Mater
February 2025
Dental Research Center, Dentistry Research Institute, Tehran University of Medical Sciences, Tehran, Iran; Restorative Dentistry Department, School of Dentistry, Tehran University of Medical Sciences, Tehran, Iran. Electronic address:
Objective: The anti-caries effects of titanium tetrafluoride (TiF4) are well-documented, but its low pH challenges clinical application. This study evaluated PEG-citrate dendrimer as a carrier to enhance TiF4 stability and efficacy.
Methods: PEG-citrate dendrimer and TiF4-dendrimer gel were synthesized, and their structures confirmed using Fourier Transform Infrared Spectroscopy (FTIR), Hydrogen Nuclear Magnetic Resonance (1H NMR), and Liquid Chromatography-Mass Spectrometry (LC-MS).
Chembiochem
December 2024
Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, Xiamen, 361005, China.
We report the creation of multivalent ligand surfaces for cell capture by conjugation of ligand-appended 2D peptide assemblies on an antifouling glass substrate. The sheet-like structures organize ligands into non-uniform, patchy patterns, enhancing multivalent cell targeting. A 155 % increase in captured cells was achieved compared to the presentation of the ligands on surfaces lacking the peptide sheets.
View Article and Find Full Text PDFBiochim Biophys Acta Rev Cancer
November 2024
Department of Clinical and Translational Research, Chittaranjan National Cancer Institute, 37 S.P. Mukherjee Road, Kolkata 700 026, India. Electronic address:
The bottleneck on therapeutics and diagnostics is removed by an alternate approach known as theranostics which combines both therapeutics and diagnostics within a single platform. Due to this "all in one" nature of theranostics, it is now extensively applied in the medicinal field mainly in cancer treatment over the conventional therapy. Recently, FDA approval of lutetium 177 (177Lu) DOTATATE and 177Lu-PSMA-based radionuclide theranostics are clinically used and very few theranostics specific to breast cancer are in clinical trials.
View Article and Find Full Text PDFChemistry
January 2025
International Joint Laboratory of Biomimetic & Smart Polymers, School of Materials Science and Engineering, Shanghai University, Mailbox 152, Shangda Rd. 99, Shanghai, 200444, China.
Dendritic amphiphiles are a promising class of topological blocks for self-assembly to construct chiral supramolecular aggregates in aqueous media. Their unique dendritic geometry, structure variability and multivalence can mediate the assemblies with versatile morphologies and functions. The bulky dendritic moieties also enable the appropriate association-repulsion balance to control supramolecular growth, and simultaneously shield the assemblies with enhanced stabilities.
View Article and Find Full Text PDFWiley Interdiscip Rev Nanomed Nanobiotechnol
November 2024
Laser Research Centre, Faculty of Health Sciences, University of Johannesburg, Doornfontein, South Africa.
Nano-formulation has generated attention in the battle against cancer, because of its great flexibility, reduced adverse side effects, and accuracy in delivering drugs to target tissues dependent on the size and surface characteristics of the disease. The field of photodynamic treatment has advanced significantly in the past years. Photodynamic techniques that use nano-formulations have surfaced to further the field of nanotechnology in medicine, especially in cancer treatment.
View Article and Find Full Text PDFJ Mater Chem B
December 2024
State Key Laboratory of Natural Medicines, National R&D Center for Chinese Herbal Medicine Processing, Department of Food Quality and Safety, College of Engineering, China Pharmaceutical University, 210009, China.
Early cancer detection plays a vital role in improving the survival rate of cancer patients, underscoring the importance of developing cancer detection methods. However, it is a great challenge to achieve simple, rapid, and accurate methods for simultaneously discerning various cancers. Herein we developed a 5-element porphyrin-embedded dendrimer-based sensor array, targeting the parallel discrimination of multiple cancers.
View Article and Find Full Text PDFJ Chem Phys
November 2024
Saint Petersburg State University, 7/9 Universitetskaya nab, 199034 Saint Petersburg, Russia.
The radius of gyration, Rg, and the hydrodynamic radius, Rh, are the main experimental parameters that characterize the size of linear and branched macromolecules. In the case of dendrimers in solution, the ratio Rg/Rh, depending on the global conformation, varies from 1 (for a Gaussian soft sphere) to 3/5 (for a hard sphere). However, for high-generation dendrimers, this ratio may be less than the limiting value for a hard sphere.
View Article and Find Full Text PDFAdv Colloid Interface Sci
January 2025
National R&D Branch Center for Freshwater Aquatic Products Processing Technology (Shanghai), Integrated Scientific Research Base on Comprehensive Utilization Technology for By-Products of Aquatic Product Processing of Ministry of Agriculture and Rural Affairs of the People's Republic of China, Shanghai Engineering Research Center of Aquatic-Product Processing and Preservation, College of Food Science & Technology, Shanghai Ocean University, Shanghai 201306, China; Medical Food Laboratory, Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Shanghai Institute for Pediatric Research, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China; Department of Clinical Nutrition, College of Health Science and Technology, Shanghai Jiao Tong University School of Medicine, Shanghai 200135, China; Marine Biomedical Science and Technology Innovation Platform of Lingang Special Area, Shanghai 201306, China. Electronic address:
Cardiovasc Intervent Radiol
November 2024
Department of Biochemistry, University of Miami Miller School of Medicine, Miami, FL, USA.
Purpose: To test the efficacy of nanocarrier (NC) mediated mesenchymal stem cell (MSC) therapy for liver regeneration following thermal ablation of porcine livers.
Materials And Methods: Liver radiofrequency ablation was performed in 18 swines divided into MSC, MSC + NC and control groups. The test groups received infusion of MSC or MSC + NC labeled with enhanced green fluorescent protein (eGFP) via hepatic artery.
Biomater Adv
October 2023
Institute of Molecular and Cell Biology, Agency for Science, Technology and Research, Singapore; Department of Orthopaedic Surgery, Yong Yoo Lin School of Medicine, National University of Singapore; School of Chemical Engineering, The University of Queensland, Brisbane, Qld 4072, Australia. Electronic address:
Bone morphogenetic protein 2 (BMP-2) is an osteoinductive protein and a potent inducers of bone formation, playing an essential role during bone fracture repair. Heparan sulfate (HS), a highly charged and linear polysaccharide, is known to interact with and enhance BMP-2 bioactivity. Despite showing potential as a potent adjuvant of the endogenous bone healing response, commercially available HS is derived from animal sources which are less desirable when considering translation into the clinic.
View Article and Find Full Text PDFBiomaterials
April 2025
School of Medicine, South China University of Technology, Guangzhou, 510006, China; National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, 510006, China; Guangdong Provincial Key Laboratory of Biomedical Engineering, Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education, South China University of Technology, Guangzhou, 510006, China. Electronic address:
Remodeling the immunosuppressive tumor microenvironment (TME) by immunomodulators has been well studied in the past years. However, strategies that enable concurrent modulation of both the immunosuppressive TME and tumor-draining lymph nodes (TDLNs) are still in the infancy. Here, we report a pH-sensitive size-switchable nanocluster, SPN-R848, to achieve simultaneous accumulation in tumor and TDLNs for immune activation.
View Article and Find Full Text PDFDiscov Nano
October 2024
Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research-SAS Nagar, Mohali, 160102, India.
Multiple sclerosis (MS) is a neuroimmunological disorder which causes axonal damage, demyelination and paralysis. Although numerous therapeutics have been developed for the effective treatment of MS and a few have been approved in recent decades, complete remission and treatment of MS remain a matter of concern. Nanotechnology is a potential approach for manipulating the properties of materials at the molecular level to attain desired properties.
View Article and Find Full Text PDFJ Am Chem Soc
October 2024
School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou International Campus, Guangzhou 511442, China.