29 results match your criteria: "The International Livestock Research Institute[Affiliation]"

One of the principal limitations on livestock productivity in sub-Saharan Africa is the constraining effect of infectious diseases, including tick-borne blood pathogens. Currently, diagnostic markers for these pathogens are species or genus specific, making it challenging to implement high-throughput screening methods. The aim of this study was to develop and validate a novel high-throughput diagnostic tool capable of detecting a range of important haemopathogens in livestock.

View Article and Find Full Text PDF

Small-scale cultivation and irrigation of planted forages can increase the availability of good-quality animal feed in smallholder farms. However, low adoption rates of improved forage technologies in most parts of sub-Saharan Africa have been observed and are partly attributed to limited understanding of gender dynamics in the context of production and utilization of planted forages. The introduction of small-scale cultivation and irrigation of planted forages is likely to interlink gender relations in the mixed crop-livestock farming system given the differences in contributions, benefits and challenges men and women farmers face.

View Article and Find Full Text PDF

Profiling the immune epigenome across global cattle breeds.

Genome Biol

May 2023

The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush Campus, Edinburgh, EH25 9RG, UK.

Background: Understanding the variation between well and poorly adapted cattle breeds to local environments and pathogens is essential for breeding cattle with improved climate and disease-resistant phenotypes. Although considerable progress has been made towards identifying genetic differences between breeds, variation at the epigenetic and chromatin levels remains poorly characterized. Here, we generate, sequence and analyse over 150 libraries at base-pair resolution to explore the dynamics of DNA methylation and chromatin accessibility of the bovine immune system across three distinct cattle lineages.

View Article and Find Full Text PDF

Optical mapping compendium of structural variants across global cattle breeds.

Sci Data

October 2022

The Roslin Institute, Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush Campus, Midlothian, EH25 9RG, United Kingdom.

Structural variants (SV) have been linked to important bovine disease phenotypes, but due to the difficulty of their accurate detection with standard sequencing approaches, their role in shaping important traits across cattle breeds is largely unexplored. Optical mapping is an alternative approach for mapping SVs that has been shown to have higher sensitivity than DNA sequencing approaches. The aim of this project was to use optical mapping to develop a high-quality database of structural variation across cattle breeds from different geographical regions, to enable further study of SVs in cattle.

View Article and Find Full Text PDF

Author Correction: A cattle graph genome incorporating global breed diversity.

Nat Commun

May 2022

The Roslin Institute, Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush Campus, Midlothian, EH25 9RG, UK.

View Article and Find Full Text PDF

A cattle graph genome incorporating global breed diversity.

Nat Commun

February 2022

The Roslin Institute, Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush Campus, Midlothian, EH25 9RG, UK.

Despite only 8% of cattle being found in Europe, European breeds dominate current genetic resources. This adversely impacts cattle research in other important global cattle breeds, especially those from Africa for which genomic resources are particularly limited, despite their disproportionate importance to the continent's economies. To mitigate this issue, we have generated assemblies of African breeds, which have been integrated with genomic data for 294 diverse cattle into a graph genome that incorporates global cattle diversity.

View Article and Find Full Text PDF

The tick-borne protozoan parasite Theileria parva causes an acute, often fatal disease in cattle throughout a large part of eastern and southern Africa. Infection of African buffalo (Syncerus caffer) is also widespread in this region but does not cause clinical disease in this species. This difference most likely reflects the evolutionary history of the parasites in these species, in that cattle were only introduced into Africa within the last 8000 years.

View Article and Find Full Text PDF

Macrophage colony-stimulating factor (CSF1 or M-CSF) and interleukin 34 (IL34) are secreted cytokines that control macrophage survival and differentiation. Both act through the CSF1 receptor (CSF1R), a type III transmembrane receptor tyrosine kinase. The functions of CSF1R and both ligands are conserved in birds.

View Article and Find Full Text PDF

The Babraham pig is a highly inbred breed first developed in the United Kingdom approximately 50 years ago. Previous reports indicate a very high degree of homozygosity across the genome, including the major histocompatibility complex (MHC) region, but confirmation of homozygosity at the specific MHC loci was lacking. Using both direct sequencing and PCR-based sequence-specific typing, we confirm that Babraham pigs are essentially homozygous at their MHC loci and formalise their MHC haplotype as Hp-55.

View Article and Find Full Text PDF

Ancient diversity and geographical sub-structuring in African buffalo Theileria parva populations revealed through metagenetic analysis of antigen-encoding loci.

Int J Parasitol

March 2018

Institute of Biodiversity Animal Health and Comparative Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Henry Wellcome Building, Garscube Campus, Bearsden Road, Glasgow G61 1QH, UK; School of Veterinary Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Bearsden Road, Glasgow G61 1QH, UK.

An infection and treatment protocol involving infection with a mixture of three parasite isolates and simultaneous treatment with oxytetracycline is currently used to vaccinate cattle against Theileria parva. While vaccination results in high levels of protection in some regions, little or no protection is observed in areas where animals are challenged predominantly by parasites of buffalo origin. A previous study involving sequencing of two antigen-encoding genes from a series of parasite isolates indicated that this is associated with greater antigenic diversity in buffalo-derived T.

View Article and Find Full Text PDF

Approaches to vaccination against Theileria parva and Theileria annulata.

Parasite Immunol

December 2016

The Roslin Institute, Royal (Dick) School of Veterinary Studies, University of Edinburgh, Midlothian, UK.

Despite having different cell tropism, the pathogenesis and immunobiology of the diseases caused by Theileria parva and Theileria annulata are remarkably similar. Live vaccines have been available for both parasites for over 40 years, but although they provide strong protection, practical disadvantages have limited their widespread application. Efforts to develop alternative vaccines using defined parasite antigens have focused on the sporozoite and intracellular schizont stages of the parasites.

View Article and Find Full Text PDF

Immunity against Theileria parva is associated with CD8 T-cell responses that exhibit immunodominance, focusing the response against limited numbers of epitopes. As candidates for inclusion in vaccines, characterization of responses against immunodominant epitopes is a key component in novel vaccine development. We have previously demonstrated that the Tp249-59 and Tp1214-224 epitopes dominate CD8 T-cell responses in BoLA-A10 and BoLA-18 MHC I homozygous animals, respectively.

View Article and Find Full Text PDF

Many participatory processes fail to generate social change and collaborative outcomes. This failure can partly be explained by how divergent stakeholders' frames are handled. This paper builds on the framing and participation literature to explain how facilitators can manage frame diversity and foster collaborative outcomes.

View Article and Find Full Text PDF

An infection and treatment protocol is used to vaccinate cattle against Theileria parva infection. Due to incomplete cross-protection between different parasite isolates, a mixture of three isolates, termed the Muguga cocktail, is used for vaccination. While vaccination of cattle in some regions provides high levels of protection, some animals are not protected against challenge with buffalo-derived T.

View Article and Find Full Text PDF

Cassava brown streak disease is caused by two devastating viruses, Cassava brown streak virus (CBSV) and Ugandan cassava brown streak virus (UCBSV) which are frequently found infecting cassava, one of sub-Saharan Africa's most important staple food crops. Each year these viruses cause losses of up to $100 million USD and can leave entire families without their primary food source, for an entire year. Twelve new whole genomes, including seven of CBSV and five of UCBSV were uncovered in this research, doubling the genomic sequences available in the public domain for these viruses.

View Article and Find Full Text PDF

Gastrointestinal (GI) parasitic infection is the main health constraint for small ruminant production, causing loss of weight and/or death. Red Maasai sheep have adapted to a tropical environment where extreme parasite exposure is a constant, especially with highly pathogenic Haemonchus contortus. This breed has been reported to be resistant to gastrointestinal parasite infection, hence it is considered an invaluable resource to study associations between host genetics and resistance.

View Article and Find Full Text PDF

The development of sensitive surveillance technologies using PCR-based detection of microbial DNA, such as the reverse line blot assay, can facilitate the gathering of epidemiological information on tick-borne diseases, which continue to hamper the productivity of livestock in many parts of Africa and elsewhere. We have employed a reverse line blot assay to detect the prevalence of tick-borne parasites in an intensively studied cohort of indigenous calves in western Kenya. The calves were recruited close to birth and monitored for the presence of infectious disease for up to 51 weeks.

View Article and Find Full Text PDF

Tick-borne diseases are a major impediment to improved productivity of livestock in sub-Saharan Africa. Improved control of these diseases would be assisted by detailed epidemiological data. Here we used longitudinal, serological data to determine the patterns of exposure to Theileria parva, Theileria mutans, Babesia bigemina and Anaplasma marginale from 548 indigenous calves in western Kenya.

View Article and Find Full Text PDF

Developing country livestock production systems are diverse and dynamic, and include those where existing indigenous breeds are currently optimal and likely to remain so, those where non-indigenous breed types are already in common use, and systems that are changing, such as by intensification, where the introduction of new breed types represents significant opportunities. These include opportunities to improve the livelihood of the world's poor, increase food and nutrition security and enhance environmental sustainability. At present, very little research has focused on this issue, such that significant knowledge gaps in relation to breed-change interventions remain.

View Article and Find Full Text PDF

The passive transfer of antibodies from dams to offspring via colostrum is believed to play an important role in protecting neonatal mammals from infectious disease. The study presented here investigates the uptake of colostrum by 548 calves in western Kenya maintained under smallholder farming, an important agricultural system in eastern Africa. Serum samples collected from the calves and dams at recruitment (within the first week of life) were analysed for the presence of antibodies to four tick-borne haemoparasites: Anaplasma marginale, Babesia bigemina, Theileria mutans and Theileria parva.

View Article and Find Full Text PDF

The presence of bluetongue virus (BTV) and Epizootic Haemorrhagic Disease virus (EHDV) in indigenous calves in western Kenya was investigated. Serum was analysed for BTV and EHDV antibodies. The population seroprevalences for BTV and EHDV for calves at 51 weeks of age were estimated to be 0.

View Article and Find Full Text PDF

A genome-wide scan was performed to detect quantitative trait loci (QTL) for resistance to the gastrointestinal nematode Haemonchus contortus in a double backcross population of Red Maasai and Dorper sheep. The mapping population comprised six sire families, with 1026 lambs in total. The lambs were artificially challenged with H.

View Article and Find Full Text PDF

This paper describes the traditional breeding objectives and practices of West African Dwarf goat, Djallonke sheep, and N'dama cattle keepers in The Gambia and discusses the implications of these on the design of breeding-related interventions to improve livestock productivity. Data were collected via surveys implemented within three study sites in The Gambia, where traditional mixed crop-livestock smallholder farming predominates. The surveys comprised a participatory rural appraisal conducted in nine communities and a household questionnaire targeting 238 households.

View Article and Find Full Text PDF

Theileria parva causes East Coast fever, an economically important disease of cattle in sub-Saharan Africa. We describe a nested polymerase chain reaction (nPCR) assay for the detection of T. parva DNA in cattle blood spotted onto filter paper using primers derived from the T.

View Article and Find Full Text PDF

Reassociation kinetics and flow cytometry data indicate that ixodid tick genomes are large, relative to most arthropods, containing>or=10(9) base pairs. The molecular basis for this is unknown. We have identified a novel small interspersed element with features of a tRNA-derived SINE, designated Ruka, in genomic sequences of Rhipicephalus appendiculatus and Boophilus (Rhipicephalus) microplus ticks.

View Article and Find Full Text PDF