14 results match your criteria: "The Institute of Nuclear Physics of the Republic of Kazakhstan[Affiliation]"

Composite track-etched membranes (CTeMs) emerged as a versatile and high-performance class of materials, combining the precise pore structures of traditional track-etched membranes (TeMs) with the enhanced functionalities of integrated nanomaterials. This review provides a comprehensive overview of the synthesis, functionalization, and applications of CTeMs. By incorporating functional phases such as metal nanoparticles and conductive nanostructures, CTeMs exhibit improved performance in various domains.

View Article and Find Full Text PDF

In this study, copper (Cu) and nickel oxide (NiO) microtubes (MTs) were synthesized using an electroless template deposition technique within porous polycarbonate (PC) track-etched membranes (TeMs) to obtain Cu@PC and NiO@PC composite membranes, respectively. The pristine PC TeMs featured nanochannels with a pore density of 4 × 10 pores per cm and an average pore diameter of 400 ± 13 nm. The synthesis of a mixed composite, combining Cu and NiO within the PC matrix, was achieved through a two-step deposition process using a NiO@PC template.

View Article and Find Full Text PDF

This paper describes the desalination process by membrane distillation (MD) using track-etched membranes (TeMs). Hydrophobic track-etched membranes based on poly(ethylene terephthalate) (PET TeMs) with pore diameters from 700 to 1300 nm were prepared by UV-initiated graft polymerization of lauryl methacrylate (LMA) inside the nanochannels. Modified PET TeMs were investigated by Fourier transform infrared (FTIR) spectroscopy, atomic force microscopy (AFM), scanning electron microscopy (SEM), thermogravimetric analysis (TGA) and contact wetting angle (CA) measurements.

View Article and Find Full Text PDF
Article Synopsis
  • The study explores the removal of lead(ii) ions using zinc oxide (ZnO) and copper(ii) oxide (CuO) nanoparticles made from plant extracts, focusing on the influence of plant collection timing on polyphenol content.
  • Various techniques such as scanning electron microscopy and X-ray analysis were used to examine the properties of these nanoparticles.
  • Results indicated that the sorption of lead ions follows a pseudo-second-order kinetic mechanism, with ZnO and CuO demonstrating high sorption capacities of 163.6 and 153.8 mg/g, respectively.
View Article and Find Full Text PDF

Effective removal of toxic inorganic and organic pollutants is one of the current leading challenges of wastewater treatment. In this study, the decomposition of methylene blue (MB) under UV light irradiation was investigated in the presence of copper nanoclusters (NCs)-deposited polyethylene terephthalate (PET) track-etched hybrid membranes. PET track-etched membranes (TeMs) with an average pore size of ~400 nm were grafted by functional acrylic acid (AA) monomer under electron beam irradiation after oxidation with HO/UV system.

View Article and Find Full Text PDF

Nanoporous track-etched membranes (TeMs) are highly versatile materials that have shown promise in various applications such as filtration, separation, adsorption, and catalysis due to their mechanical integrity and high surface area. The performance of TeMs as catalysts for removing toxic pollutants is greatly influenced by the pore diameter, density, and functionalization of the nanochannels. In this study, the synthesis of functionalized poly(ethylene terephthalate) (PET) TeMs with Pd nanoparticles (NPs) as catalysts for the photodegradation of the antibiotic metronidazole (MTZ) was methodically investigated and their catalytic activity under UV irradiation was compared.

View Article and Find Full Text PDF

This paper reports the synthesis of composite track-etched membranes (TeMs) modified with electrolessly deposited copper microtubules using copper deposition baths based on environmentally friendly and non-toxic reducing agents (ascorbic acid (Asc), glyoxylic acid (Gly), and dimethylamine borane (DMAB)), and comparative testing of their lead(II) ion removal capacity via batch adsorption experiments. The structure and composition of the composites were investigated by X-ray diffraction technique and scanning electron and atomic force microscopies. The optimal conditions for copper electroless plating were determined.

View Article and Find Full Text PDF

Nanoporous track-etched membranes (TeM) are promising materials as adsorbents to remove toxic pollutants, but control over the pore diameter and density in addition to precise functionalization of nanochannels is crucial for controlling the surface area and efficiency of TeMs. This study reported the synthesis of functionalized PET TeMs as high-capacity sorbents for the removal of trivalent arsenic, As(III), which is more mobile and about 60 times more toxic than As(V). Nanochannels of PET-TeMs were functionalized by UV-initiated reversible addition fragmentation chain transfer (RAFT)-mediated grafting of 2-(dimethyamino)ethyl methacrylate (DMAEMA), allowing precise control of the degree of grafting and graft lengths within the nanochannels.

View Article and Find Full Text PDF

In this study, the potential of biogenic zinc oxide nanoparticles (ZnO NPs) in the removal of alizarin yellow R (AY) from aqueous solutions by photocatalytic degradation, as well as adsorption, was investigated. The synthesized ZnO NPs were prepared by the simple wet-combustion method using the plant extract of L. as a reducing and stabilizing agent and characterized by powder X-ray diffraction, scanning electron microscopy, energy dispersive X-ray and X-ray photoelectron spectroscopy.

View Article and Find Full Text PDF

The extremely high levels of water pollution caused by various industrial activities represent one of the most important environmental problems. Efficient techniques and advanced materials have been extensively developed for the removal of highly toxic organic pollutants, including pesticides. This study investigated the photocatalytic degradation of the fungicide carbendazim (Czm) using composite track-etched membranes (TeMs) in an aqueous solution.

View Article and Find Full Text PDF

This paper reports on the synthesis and structure elucidation of track-etched membranes (TeMs) with electrolessly deposited copper microtubes (prepared in etched-only and oxidized polyethylene terephthalate (PET) TeMs), as well as on the comparative testing of arsenic (III) ion removal capacities through bath adsorption experiments. The structure and composition of composites were investigated by X-ray diffraction technique and scanning electron and atomic force microscopies. It was determined that adsorption followed pseudo-second-order kinetics, and the adsorption rate constants were calculated.

View Article and Find Full Text PDF

In this study, the use of composite track-etched membranes (TeMs) based on polyethylene terephthalate (PET) and electrolessly deposited silver microtubes (MTs) for the decomposition of toxic phenothiazine cationic dye, methylene blue (MB), under visible light was investigated. The structure and composition of the composite membranes were elucidated by scanning electron microscopy, energy dispersive spectroscopy, and X-ray diffraction technique. Under visible light irradiation, composite membrane with embedded silver MTs (Ag/PET) displayed high photocatalytic efficiency.

View Article and Find Full Text PDF

One of the promising applications of nanomaterials is to use them as catalysts and sorbents to remove toxic pollutants such as nitroaromatic compounds and heavy metal ions for environmental protection. This work reports the synthesis of Cu/CuO-deposited composite track-etched membranes through low-temperature annealing and their application in catalysis and sorption. The synthesized Cu/CuO/poly(ethylene terephthalate) (PET) composites presented efficient catalytic activity with high conversion yield in the reduction of nitro aryl compounds to their corresponding amino derivatives.

View Article and Find Full Text PDF

The paper is devoted to the study of the effect of thermal annealing on the change in the structural properties and phase composition of metal Co nanostructures, as well as the prospects of their use as anode materials for lithium-ion batteries. During the study, a four-stage phase transition in the structure of nanowires consisting of successive transformations of the structure (Со-FCC/Co-HCP) → (Со-FCС) → (Со-FCC/СоСоО) → (СоСоО), accompanied by uniform oxidation of the structure of nanowires with an increase in temperature above 400 °C. In this case, an increase in temperature to 700 °C leads to a partial destruction of the oxide layer and surface degradation of nanostructures.

View Article and Find Full Text PDF