12 results match your criteria: "The Great Lakes Bioenergy Research Center[Affiliation]"

Background: Root and soil microbial communities constitute the below-ground plant microbiome, are drivers of nutrient cycling, and affect plant productivity. However, our understanding of their spatiotemporal patterns is confounded by exogenous factors that covary spatially, such as changes in host plant species, climate, and edaphic factors. These spatiotemporal patterns likely differ across microbiome domains (bacteria and fungi) and niches (root vs.

View Article and Find Full Text PDF

Seasonal activities of the phyllosphere microbiome of perennial crops.

Nat Commun

February 2023

The Great Lakes Bioenergy Research Center, Michigan State University, East Lansing, MI, 48824, USA.

Understanding the interactions between plants and microorganisms can inform microbiome management to enhance crop productivity and resilience to stress. Here, we apply a genome-centric approach to identify ecologically important leaf microbiome members on replicated plots of field-grown switchgrass and miscanthus, and to quantify their activities over two growing seasons for switchgrass. We use metagenome and metatranscriptome sequencing and curate 40 medium- and high-quality metagenome-assembled-genomes (MAGs).

View Article and Find Full Text PDF

Microbiome rescue: directing resilience of environmental microbial communities.

Curr Opin Microbiol

April 2023

Univ Lyon, CNRS, INSA Lyon, Université Claude Bernard Lyon 1, École Centrale de Lyon, Ampère, UMR5005, 69134 Ecully cedex, France; Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI 48824, USA; The Plant Resilience Institute, Michigan State University, East Lansing, MI 48824, USA; Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, MI 48824, USA; Program in Ecology, Evolution, and Behavior, Michigan State University, East Lansing, MI 48824, USA; The Great Lakes Bioenergy Research Center, Michigan State University, East Lansing, MI 48824, USA. Electronic address:

Earth's climate crisis threatens to disrupt ecosystem services and destabilize food security. Microbiome management will be a crucial component of a comprehensive strategy to maintain stable microbinal functions for ecosystems and plants in the face of climate change. Microbiome rescue is the directed, community-level recovery of microbial populations and functions lost after an environmental disturbance.

View Article and Find Full Text PDF

Nanolignin-based high internal phase emulsions for efficient protection of curcumin against UV degradation.

Int J Biol Macromol

February 2023

State Key Laboratory of Pulp and Paper Engineering, School of Light Industry and Engineering, South China University of Technology, Guangzhou 510640, China; DOE The Great Lakes Bioenergy Research Center, The Wisconsin Energy Institute, University of Wisconsin, Madison, WI 53726, USA. Electronic address:

As an emulsifier, lignin exhibits excellent UV resistance on drug-loaded emulsion systems for drug delivery. However, due to the structural variation and complexity of lignins from various origins, their UV shielding performance varies with the techniques for lignin extraction, which impacts properties and the protection efficiency of lignin-based HIPEs (high internal phase emulsions). In this work, lignin nanoparticles, prepared from three lignin preparations of Eucalyptus, were used in HIPEs delivery systems to protect curcumin from degradation by UV radiation.

View Article and Find Full Text PDF

Microbiomes provide critical functions that support animals, plants, and ecosystems. High-throughput sequencing (HTS) has become an essential tool for the cultivation-independent study of microbiomes found in diverse environments, but requires effective and meaningful controls. One such critical control is a mock microbial community, which is used as a positive control for nucleic acid extraction, marker gene amplification, and sequencing.

View Article and Find Full Text PDF
Article Synopsis
  • Microbial communities play a crucial role in transforming materials in the environment and can be utilized to create valuable products like medium-chain fatty acids (MCFAs) from renewable sources.
  • Two metabolic models (iFermCell215 and iFermGuilds789) have been developed to better understand and enhance these microbial communities based on existing genomic and metabolic data.
  • Simulations show that different fermentation product ratios influence MCFA production, highlighting the potential of these models to improve microbial efficiency and contribute to sustainable carbon recycling and organic residue management.
View Article and Find Full Text PDF

Chain elongation is emerging as a bioprocess to produce valuable medium-chain fatty acids (MCFA; 6 to 8 carbons in length) from organic waste streams by harnessing the metabolism of anaerobic microbiomes. Although our understanding of chain elongation physiology is still evolving, the reverse β-oxidation pathway has been identified as a key metabolic function to elongate the intermediate products of fermentation to MCFA. Here, we describe two uncultured chain-elongating microorganisms that were enriched in an anaerobic microbiome transforming the residues from a lignocellulosic biorefining process.

View Article and Find Full Text PDF

Ligand-responsive allosteric transcription factors (aTF) play a vital role in genetic circuits and high-throughput screening because they transduce biochemical signals into gene expression changes. Programmable control of gene expression from aTF-regulated promoter is important because different downstream effector genes function optimally at different expression levels. However, tuning gene expression of native promoters is difficult due to complex layers of homeostatic regulation encoded within them.

View Article and Find Full Text PDF

Sclerotinia sclerotiorum, a predominately necrotrophic fungal pathogen with a broad host range, causes a significant yield-limiting disease of soybean called Sclerotinia stem rot. Resistance mechanisms against this pathogen in soybean are poorly understood, thus hindering the commercial deployment of resistant varieties. We used a multiomic approach utilizing RNA-sequencing, gas chromatography-mass spectrometry-based metabolomics and chemical genomics in yeast to decipher the molecular mechanisms governing resistance to S.

View Article and Find Full Text PDF

Biomanufacturing from renewable feedstocks can offset fossil fuel-based chemical production. One potential biomanufacturing strategy is production of medium-chain fatty acids (MCFA) from organic feedstocks using either pure cultures or microbiomes. While the set of microbes in a microbiome can often metabolize organic materials of greater diversity than a single species can and while the role of specific species may be known, knowledge of the carbon and energy flow within and between organisms in MCFA-producing microbiomes is only now starting to emerge.

View Article and Find Full Text PDF

Abundant evidence exists to support a role for lignin as an important element in biomass recalcitrance. However, several independent studies have also shown that factors apart from lignin are also relevant and overall, the relative importance of different recalcitrance traits remains in dispute. In this study we used two genetically distant sugarcane genotypes, and performed a correlational study with the variation in anatomical parameters, cell wall composition, and recalcitrance factors between these genotypes.

View Article and Find Full Text PDF

The Carbohydrate Active Enzyme (CAZy) database indicates that glycoside hydrolase family 55 (GH55) contains both endo- and exo-β-1,3-glucanases. The founding structure in the GH55 is PcLam55A from the white rot fungus Phanerochaete chrysosporium (Ishida, T., Fushinobu, S.

View Article and Find Full Text PDF