68 results match your criteria: "The Gene Therapy Research Institute[Affiliation]"

Retroviral vector producer cells (VPC) have been considered genetically stable. A clonal cell population exhibiting a uniform vector integration pattern is used for sustained vector production. Here, we observed that the vector copy number is increased and varied in a population of established LTKOSN.

View Article and Find Full Text PDF

Immunoreactive cystic fibrosis transport regulator (CFTR) proteins in human sweat ducts has been documented but CFTR expression in the secretory coil has remained uncertain. Using monoclonal antibodies (MAbs) against epitopes in the R-domain and C-terminus, we observed the following: Formalin fixation masks the CFTR epitopes but the epitopes are exposed by treatment with urea and heat (antigen retrieval). Pen-Fix fixation preserves CFTR epitopes.

View Article and Find Full Text PDF

Adenoviral vector-mediated p53 expression induced apoptosis is a well established gene therapy approach that has been evaluated extensively in epithelial tumors but only recently in lymphoid malignancies mainly due to the known resistance of the lymphoid lineage to adenovirus infection. Recently, it was shown that this resistance is not absolute and that cell lines derived from anaplastic large cell lymphoma (ALCL) and some other lymphoid malignancies are efficiently transduced by adenoviral vectors. Normal circulating T lymphocytes do not express coxsackie-adenovirus receptor (CAR) and alpha(nu)beta integrins and are relatively resistant to infection by adenovirus.

View Article and Find Full Text PDF

Genetic diseases are often caused by nonsense mutations. The resulting defect in protein translation can be restored by expressing suppressor tRNA in the mutant cells. Our goal was to demonstrate both protein restoration and phenotypic correction using these small transgenes.

View Article and Find Full Text PDF

We demonstrate a novel method of concentrating radiation for tumor imaging or killing. The rat sodium/iodide symporter gene (rNIS) was cloned into a retroviral vector for transfer into cancer cells to mimic the iodide uptake of thyroid follicular cells. In vitro iodide transport shows that the symporter functions similarly in rNIS-transduced tumor cells and rat thyroid follicular cells.

View Article and Find Full Text PDF

Xenograft hyperacute rejection in humans occurs as a secondary response to a cellular glycosylation incompatibility with most non-human mammalian species. A key component of hyperacute rejection, alpha(1,3)galactosyl (agal) epitopes present on the surface of most non-human mammal cells, is bound by host anti-agal IgG antibodies leading to the activation of complement and, cellular lysis (1). The enzyme causing specific glycosylation patterns, alpha(1,3)galactosyltransferase [alpha(1,3)GT], directs the addition of agal to N-acetyl glucosamine residues in the trans Golgi apparatus in most mammalian species including Mus musculus, but not old world primates, apes or humans.

View Article and Find Full Text PDF

Tumor invasion, metastasis, and resistance to chemotherapeutic drugs or radiation are major obstacles for the successful treatment of cancer. To overcome some of these limitations, therapeutic strategies that increase the specificity and efficacy and reduce the toxicity of the anti-cancer drugs or toxins are being explored. Cancer cells overexpress specific protein antigens and carbohydrate structures that may function as cell surface receptors.

View Article and Find Full Text PDF

This study will evaluate the safety and efficacy of allogenic donor lymphocyte infusions in patients who have relapsed hematologic malignancies after allogeneic bone marrow transplantation (BMT). Donor lymphocyte transfusions have resulted in the cure of some patients with relapsed leukemia or lymphoproliferative disorder after allogeneic BMT, but has been complicated by the development of graft versus host disease (GvHD). We hypothesize that a retroviral vector containing the Herpes simplex thymidine kinase (HStk) gene will allow for retention of the anti-leukemia response of transfused donor lymphocytes while allowing for the adverse effects of GVHD to be mitigated.

View Article and Find Full Text PDF

For gene therapy approaches to succeed, improved vector systems are needed that combine a large carrying capacity with high transduction efficiency in vivo. Towards this goal, we have developed a novel herpes simplex virus (HSV) amplicon vector, pHE, which contains an HSV-1 replication origin (ori S) and packaging sequence that permit vector replication and packaging into HSV-1 capsids. The vector also contains the Epstein-Barr virus (EBV) unique latent replication origin (ori P) sequence and a modified EBNA-1 gene to allow the vector to be maintained as an episome in transfected E5 helper cells.

View Article and Find Full Text PDF

Borderline ovarian tumors (BOT) are a low-grade form of ovarian malignancy with significantly less aggressive behavior than classical epithelial ovarian carcinoma (EOC). Yet, a subset of these tumors can progress and be lethal. Prognostic factors related to the development of BOT are similar to those for EOC.

View Article and Find Full Text PDF

Aequorea victoria green fluorescent protein (GFP) is a promising fluorescent marker which is active in a diverse array of prokaryotic and eukaryotic organisms. A key feature underlying the versatility of GFP is its capacity to undergo heterocyclic chromophore formation by cyclization of a tripeptide present in its primary sequence and thereby acquiring fluorescent activity in a variety of intracellular environments. In order to define further the primary structure requirements for chromophore formation and fluorescence in GFP, a series of N- and C-terminal GFP deletion variant expression vectors were created using the polymerase chain reaction.

View Article and Find Full Text PDF

Gene therapy for solid tumors.

Br Med Bull

January 1995

Molecular Immunology Laboratory, Human Gene Therapy Research Institute, Des Moines, Iowa, USA.

Advances in molecular biology have proven that there is a genetic basis to the process of carcinogenesis that allows for the consideration of entirely new approaches to the treatment of cancer. The development of an ability to selectively destroy cancer cells through the manipulation of DNA may provide the opportunity to dramatically improve the quality of care and treatment of cancer patients by decreasing systemic toxicities and enhancing efficacy. These new therapies may occur through the restoration of genetic health, such as the insertion of normal tumor suppressor genes or via down-regulation of oncogene or growth factor receptor expression.

View Article and Find Full Text PDF

Murine retroviral vector producer cells (VPC) can selectively transfer genes stably into proliferating cells. We injected LacZ gene producing VPC directly into normal rat liver. There was no measurable gene transfer into the surrounding hepatic parenchyma with X-GAL staining.

View Article and Find Full Text PDF