79 results match your criteria: "The Flatiron Institute[Affiliation]"

Phaseless Auxiliary-Field Quantum Monte Carlo Method for Cavity-QED Matter Systems.

J Chem Theory Comput

January 2025

Center for Computational Quantum Physics, The Flatiron Institute, 162 Fifth Avenue, New York, New York, 10010, United States.

We present a generalization of the phaseless auxiliary-field quantum Monte Carlo (AFQMC) method to cavity quantum-electrodynamical (QED) matter systems. The method can be formulated in both the Coulomb and the dipole gauge. We verify its accuracy by benchmarking calculations on a set of small molecules against full configuration interaction and state-of-the-art QED coupled cluster (QED-CCSD) calculations.

View Article and Find Full Text PDF

High-harmonic generation (HHG) is a nonlinear process in which a material sample is irradiated by intense laser pulses, causing the emission of high harmonics of incident light. HHG has historically been explained by theories employing a classical electromagnetic field, successfully capturing its spectral and temporal characteristics. However, recent research indicates that quantum-optical effects naturally exist or can be artificially induced in HHG, such as entanglement between emitted harmonics.

View Article and Find Full Text PDF

Controlling the functional properties of quantum materials with light has emerged as a frontier of condensed-matter physics, leading to the discovery of various light-induced phases of matter, such as superconductivity, ferroelectricity, magnetism and charge density waves. However, in most cases, the photoinduced phases return to equilibrium on ultrafast timescales after the light is turned off, limiting their practical applications. Here we use intense terahertz pulses to induce a metastable magnetization with a remarkably long lifetime of more than 2.

View Article and Find Full Text PDF

Strong laser pulses can control superconductivity, inducing nonequilibrium transient pairing by leveraging strong-light matter interaction. Here, we demonstrate theoretically that equilibrium ground-state phonon-mediated superconductive pairing can be affected through the vacuum fluctuating electromagnetic field in a cavity. Using the recently developed ab initio quantum electrodynamical density-functional theory approximation, we specifically investigate the phonon-mediated superconductive behavior of MgB[Formula: see text] under different cavity setups and find that in the strong light-matter coupling regime its superconducting transition temperature T[Formula: see text] can be enhanced at most by [Formula: see text]10% in an in-plane (or out-of-plane) polarized and realistic cavity via photon vacuum fluctuations.

View Article and Find Full Text PDF

Ultraclean graphene at charge neutrality hosts a quantum critical Dirac fluid of interacting electrons and holes. Interactions profoundly affect the charge dynamics of graphene, which is encoded in the properties of its electron-photon collective modes: surface plasmon polaritons (SPPs). Here, we show that polaritonic interference patterns are particularly well suited to unveil the interactions in Dirac fluids by tracking polaritonic interference in time at temporal scales commensurate with the electronic scattering.

View Article and Find Full Text PDF
Article Synopsis
  • Hybrid systems show promise for exploring unconventional superconductivity and topological states, but their small size makes them difficult to measure with standard techniques.
  • The authors present a new microwave-based probe to measure superfluid density in micrometer-sized superconductors, revealing a two-fold anisotropic superfluid density in a superconductor-ferromagnet bilayer.
  • The findings suggest a link between spin dynamics and superconductivity, and the technique can potentially be applied to investigate other low-dimensional materials with fragile superconducting properties.
View Article and Find Full Text PDF

Equilibrium Parametric Amplification in Raman-Cavity Hybrids.

Phys Rev Lett

September 2024

Center for Optical Quantum Technologies and Institute for Quantum Physics, University of Hamburg, 22761 Hamburg, Germany.

Parametric resonances and amplification have led to extraordinary photoinduced phenomena in pump-probe experiments. While these phenomena manifest themselves in out-of-equilibrium settings, here, we present the striking result of parametric amplification in equilibrium. We demonstrate that quantum and thermal fluctuations of a Raman-active mode amplifies light inside a cavity, at equilibrium, when the Raman mode frequency is twice the cavity mode frequency.

View Article and Find Full Text PDF

Helical spin structures are expressions of magnetically induced chirality, entangling the dipolar and magnetic orders in materials. The recent discovery of helical van der Waals multiferroics down to the ultrathin limit raises prospects of large chiral magnetoelectric correlations in two dimensions. However, the exact nature and magnitude of these couplings have remained unknown so far.

View Article and Find Full Text PDF

In recent years, time-dependent density functional theory (TDDFT) has been extensively employed for highly nonlinear optics in molecules and solids, including high harmonic generation (HHG), photoemission, and more. TDDFT exhibits a relatively low numerical cost while still describing both light-matter and electron-electron interactions ab initio, making it highly appealing. However, the majority of implementations of the theory utilize the simplest possible approximations for the exchange-correlation (XC) functional-either the local density or generalized gradient approximations, which are traditionally considered to have rather poor chemical accuracy.

View Article and Find Full Text PDF
Article Synopsis
  • The study presents a method for integrating low-energy zero-modes into graphene nanoribbons (GNRs) to create materials with custom electronic properties for nanoelectronics.
  • The researchers successfully synthesized [3]triangulene-GNRs, which are chains of linked [3]triangulenes, demonstrating a narrow band gap of about 0.7 eV and the existence of topological end states verified by scanning tunneling spectroscopy.
  • Through theoretical calculations, the work reveals the mechanisms behind the selective synthesis and the role of gold-carbon bonds in the polymerization process on surfaces.
View Article and Find Full Text PDF

Photonic time crystals refer to materials whose dielectric properties are periodic in time, analogous to a photonic crystal whose dielectric properties is periodic in space. Here, we theoretically investigate photonic time-crystalline behaviour initiated by optical excitation above the electronic gap of the excitonic insulator candidate TaNiSe. We show that after electron photoexcitation, electron-phonon coupling leads to an unconventional squeezed phonon state, characterised by periodic oscillations of phonon fluctuations.

View Article and Find Full Text PDF

Extracting thermodynamic properties from van 't Hoff plots with emphasis on temperature-sensing ion channels.

Temperature (Austin)

November 2023

Center for Computational Biology & Center for Computational Mathematics, The Flatiron Institute, New York, NY, USA.

Transient receptor potential (TRP) ion channels are among the most well-studied classes of temperature-sensing molecules. Yet, the molecular mechanism and thermodynamic basis for the temperature sensitivity of TRP channels remains to this day poorly understood. One hypothesis is that the temperature-sensing mechanism can simply be described by a difference in heat capacity between the closed and open channel states.

View Article and Find Full Text PDF

Floquet engineering has recently emerged as a technique for controlling material properties with light. Floquet phases can be probed with time- and angle-resolved photoelectron spectroscopy (Tr-ARPES), providing direct access to the laser-dressed electronic bands. Applications of Tr-ARPES to date focused on observing the Floquet-Bloch bands themselves, and their build-up and dephasing on sub-laser-cycle timescales.

View Article and Find Full Text PDF

Interactions between light and matter allow the realization of out-of-equilibrium states in quantum solids. In particular, nonlinear phononics is one of the most efficient approaches to realizing the stationary electronic state in nonequilibrium. Herein, by an extended ab initio molecular dynamics method, we identify that long-lived light-driven quasistationary geometry could stabilize the topological nature in the material family of HgTe compounds.

View Article and Find Full Text PDF

Condensates are a hallmark of emergence in quantum materials such as superconductors and charge density waves. Excitonic insulators are an intriguing addition to this library, exhibiting spontaneous condensation of electron-hole pairs. However, condensate observables can be obscured through parasitic coupling to the lattice.

View Article and Find Full Text PDF

High-harmonic spectroscopy of low-energy electron-scattering dynamics in liquids.

Nat Phys

September 2023

Laboratory of Physical Chemistry, ETH Zürich, Zürich, Switzerland.

Article Synopsis
  • * The researchers found that the energy cut-off for high-harmonic generation in liquids is a consistent characteristic and depends on certain intensity thresholds, which can be explained by how electrons scatter within the liquid.
  • * This method could help advance our understanding of radiation damage to living tissues and offers a unique way to explore rapid electron dynamics in liquids, enhancing the study of chemical processes at an ultrafast scale.
View Article and Find Full Text PDF

Coherent control over electron dynamics in atoms and molecules using high-intensity circularly polarized laser pulses gives rise to current loops, resulting in the emission of magnetic fields. We propose, and demonstrate with ab initio calculations, "current-gating" schemes to generate direct or alternating-current magnetic pulses in the infrared spectral region, with highly tunable waveform and frequency, and showing femtosecond-to-attosecond pulse duration. In optimal conditions, the magnetic pulse can be highly isolated from the driving laser and exhibits a high flux density (∼1 T at a few hundred nanometers from the source, with a pulse duration of 787 attoseconds) for application in forefront experiments of ultrafast spectroscopy.

View Article and Find Full Text PDF

Bayesian spatial modelling of localised SARS-CoV-2 transmission through mobility networks across England.

PLoS Comput Biol

November 2023

UK Health Security Agency, Infectious Disease Modelling Team, London, United Kingdom.

In the early phases of growth, resurgent epidemic waves of SARS-CoV-2 incidence have been characterised by localised outbreaks. Therefore, understanding the geographic dispersion of emerging variants at the start of an outbreak is key for situational public health awareness. Using telecoms data, we derived mobility networks describing the movement patterns between local authorities in England, which we have used to inform the spatial structure of a Bayesian BYM2 model.

View Article and Find Full Text PDF

Laser-induced ultrafast demagnetization is a phenomenon of utmost interest and attracts significant attention because it enables potential applications in ultrafast optoelectronics and spintronics. As a spin-orbit coupling assisted magnetic insulator, α-RuCl provides an attractive platform to explore the physics of electronic correlations and unconventional magnetism. Using time-dependent density functional theory, we explore the ultrafast laser-induced dynamics of the electronic and magnetic structures in α-RuCl.

View Article and Find Full Text PDF

The microscopic mechanism of the light-matter interactions that induce orbital angular momentum (OAM) in electromagnetic fields is not thoroughly understood. In this work, we employ Archimedean spiral vortex generators in time-resolved numerical simulations using the Octopus code to observe the behind-the-scenes of OAM generation. We send a perfect circularly-polarized plane-wave light onto plasmonic optical vortex generators and observe the resulting twisted light formation with complete spatio-temporal information.

View Article and Find Full Text PDF

We study low-frequency linearly polarized laser-dressing in materials with valley (graphene and hexagonal-Boron-Nitride) and topological (Dirac- and Weyl-semimetals) properties. In Dirac-like linearly dispersing bands, the laser substantially moves the Dirac nodes away from their original position, and the movement direction can be fully controlled by rotating the laser polarization. We prove that this effect originates from band nonlinearities away from the Dirac nodes.

View Article and Find Full Text PDF

Two-dimensional (2D) magnetic systems possess versatile magnetic order and can host tunable magnons carrying spin angular momenta. Recent advances show angular momentum can also be carried by lattice vibrations in the form of chiral phonons. However, the interplay between magnons and chiral phonons as well as the details of chiral phonon formation in a magnetic system are yet to be explored.

View Article and Find Full Text PDF

Light-Induced Metastable Hidden Skyrmion Phase in the Mott Insulator Cu OSeO.

Adv Mater

August 2023

Laboratory for Ultrafast Microscopy and Electron Scattering, Institute of Physics, École Polytechnique Fédérale de Lausanne, Lausanne, 1015, Switzerland.

The discovery of a novel long-lived metastable skyrmion phase in the multiferroic insulator Cu OSeO visualized with Lorentz transmission electron microscopy for magnetic fields below the equilibrium skyrmion pocket is reported. This phase can be accessed by exciting the sample non-adiabatically with near-infrared femtosecond laser pulses and cannot be reached by any conventional field-cooling protocol, referred as a hidden phase. From the strong wavelength dependence of the photocreation process and via spin-dynamics simulations, the magnetoelastic effect is identified as the most likely photocreation mechanism.

View Article and Find Full Text PDF

The excitonic insulator is an electronically driven phase of matter that emerges upon the spontaneous formation and Bose condensation of excitons. Detecting this exotic order in candidate materials is a subject of paramount importance, as the size of the excitonic gap in the band structure establishes the potential of this collective state for superfluid energy transport. However, the identification of this phase in real solids is hindered by the coexistence of a structural order parameter with the same symmetry as the excitonic order.

View Article and Find Full Text PDF