3 results match your criteria: "The College of Water Conservancy and Civil Engineering Inner Mongolia Agricultural University[Affiliation]"
J Contam Hydrol
November 2024
The College of Water Conservancy and Civil Engineering Inner Mongolia Agricultural University, Hohhot 010018, China; Inner Mongolia Water Resource Protection and Utilization Key Laboratory, Hohhot 010018, China; Autonomous Region Collaborative Innovation Center for Comprehensive Management of Water Resources and Water Environment in the Inner, Mongolia Section of the Yellow River Basin, Hohhot 010018, China. Electronic address:
Large-scale open-pit combined underground mining activities (OUM) not only reshape the original topography, geomorphology, and hydrogeochemical environment of the mining area, but also alter the regional water cycle conditions. However, due to the complexity arising from the coexistence of two coal mining technologies (open-pit and underground mining), the hydrological environmental effects remain unclear. Here, we selected the Pingshuo Mining Area in China, one of the most modernized open-pit combined underground mining regions, as the focus of our research.
View Article and Find Full Text PDFThe responses of soil moisture to rainfall are of great significance for watershed hydrological modeling. However, few studies have been done to investigate these responds on hillslope in a typical semi-arid grassland region. This study used high temporal resolution soil moisture data to explore the soil moisture dynamics, response conditions and its controls of 0-40 cm soil profile in the upslope (14°), midslope (9°), and downslope (4°) of a typical grassland inland river basin under bare ground (BG), stubble (SG), and natural grassland (CK) treatments.
View Article and Find Full Text PDFSamples in the sediments of Wuliangsuhai and Erhai Lake were selected, and the technologies of XAD-8 resins separation and three dimensional fluorescence excitation-emission matrix (3DEEM) spectra were applied, in order to study the bioavailability of dissolved organic nitrogen components to alage under the room cultivation. The obtained results showed that: (1) Average loss of DON and DOC from sediments was below 5% after dividing DON into different groups, which means the technology of XAD- 8 resins separation could be used in the study of DON components in the lake sediment. (2) Through 3DEEM analysis, hydrophilic and hydrophobic DON was dominated by protein-like and humic-like materials in the lake sediment, respectively.
View Article and Find Full Text PDF