23 results match your criteria: "The Center for Cardiovascular Sciences[Affiliation]"
Mol Aspects Med
December 2017
Center for Experimental Therapeutics and Reperfusion Injury, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA.
The resolution of inflammation is a highly regulated process enacted by endogenous mediators including specialized pro-resolving lipid mediators (SPMs): the lipoxins, resolvins, protectins and maresins. SPMs activate specific cellular receptors to temper the production of pro-inflammatory mediators, diminish the recruitment of neutrophils, and promote the clearance of dead cells by macrophages. These mediators also enhance host-defense and couple resolution of inflammation to subsequent phases of tissue repair.
View Article and Find Full Text PDFCurr Opin Clin Nutr Metab Care
March 2017
The Department of Molecular and Cellular Physiology in the Center for Cardiovascular Sciences, Albany Medical College, Albany, New York, USA.
Purpose Of Review: Nonresolving inflammation is now considered the underpinning of several prevalent human diseases, including atherosclerosis. The resolution of inflammation is a highly coordinated program to counterbalance proinflammatory signals for a swift return to tissue homeostasis. This process is controlled in part by endogenous specialized proresolving lipid mediators (SPMs).
View Article and Find Full Text PDFSci Rep
May 2016
From the Center for Cardiovascular Sciences, Albany Medical College, Albany, NY (USA).
The multifunctional Ca(2+)/calmodulin-dependent protein kinase II δ-isoform (CaMKIIδ) promotes vascular smooth muscle (VSM) proliferation, migration, and injury-induced vascular wall neointima formation. The objective of this study was to test if microRNA-30 (miR-30) family members are endogenous regulators of CaMKIIδ expression following vascular injury and whether ectopic expression of miR-30 can inhibit CaMKIIδ-dependent VSM cell function and neointimal VSM hyperplasia induced by vascular injury. The CaMKIIδ 3'UTR contains a consensus miR-30 binding sequence that is highly conserved across species.
View Article and Find Full Text PDFJ Biol Chem
April 2016
From the Center for Cardiovascular Sciences and Department of Medicine, Albany Medical College and
Cardiac stem cell therapy has shown very promising potential to repair the infarcted heart but is severely limited by the poor survival of donor cells. Nitric oxide (NO) has demonstrated cytoprotective properties in various cells, but its benefits are unknown specifically for human cardiac stem cells (hCSCs). Therefore, we investigated whether pretreatment of hCSCs with a widely used NO donor, diethylenetriamine nitric oxide adduct (DETA-NO), promotes cell survival.
View Article and Find Full Text PDFSci Rep
November 2015
Department of Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, NY 12180, USA.
Arteries and veins have very different susceptibility to certain vascular diseases such as atherosclerosis and vascular calcification. The molecular mechanisms of these differences are not fully understood. In this study, we discovered that COUP-TFII, a transcription factor critical for establishing the venous identity during embryonic vascular development, also regulates the pathophysiological functions of adult blood vessels, especially those directly related to vascular diseases.
View Article and Find Full Text PDFPhysiol Rep
September 2015
The Center for Cardiovascular Sciences, Albany Medical College, Albany, New York
The nonreceptor tyrosine kinase c-Abl has a role in regulating smooth muscle cell proliferation, which contributes to the development of airway remodeling in chronic asthma. MicroRNAs (miRs) are small noncoding RNA molecules that regulate gene expression by binding to complementary sequences in the 3' untranslated regions (3' UTR) of target mRNAs. Previous analysis suggests that miR-203 is able to bind to the 3' UTR of human c-Abl mRNA.
View Article and Find Full Text PDFRespir Res
August 2015
The Center for Cardiovascular Sciences, Albany Medical College, 47 New Scotland Avenue, MC-8, Albany, NY, 12208, USA.
Background: Polo-like kinase 1 (Plk1) is a serine/threonine protein kinase that has been implicated in the regulation of mitosis. In addition, the activation of mitogen-activated protein kinase (MAPK) is a key event in the early stage of the growth factor response. The role of Plk1 in MAPK phosphorylation in cells has not been investigated.
View Article and Find Full Text PDFJ Biol Chem
May 2015
From the Department of Physiology and Biophysics, Rutgers Robert Wood Johnson Medical School, Piscataway, New Jersey 08854, the Department of Surgery,
Zinc is an essential trace element that participates in a wide range of biological functions, including wound healing. Although Zn(2+) deficiency has been linked to compromised wound healing and tissue repair in human diseases, the molecular mechanisms underlying Zn(2+)-mediated tissue repair remain unknown. Our previous studies established that MG53, a TRIM (tripartite motif) family protein, is an essential component of the cell membrane repair machinery.
View Article and Find Full Text PDFJ Biol Chem
April 2015
From the Center for Cardiovascular Sciences, Albany Medical College, Albany, New York 12208
β-Catenin is a key component that connects transmembrane cadherin with the actin cytoskeleton at the cell-cell interface. However, the role of the β-catenin/cadherin interaction in smooth muscle has not been well characterized. Here stimulation with acetylcholine promoted the recruitment of β-catenin to N-cadherin in smooth muscle cells/tissues.
View Article and Find Full Text PDFJ Biol Chem
May 2014
From the Center for Cardiovascular Sciences, Albany Medical College, Albany, New York 12208
Profilin-1 (Pfn-1) is an actin-regulatory protein that has a role in modulating smooth muscle contraction. However, the mechanisms that regulate Pfn-1 in smooth muscle are not fully understood. Here, stimulation with acetylcholine induced an increase in the association of the adapter protein cortactin with Pfn-1 in smooth muscle cells/tissues.
View Article and Find Full Text PDFCurr Mol Imaging
January 2014
Albany Medical College, The Center for Cardiovascular Sciences, Albany, NY, 12208.
Optical imaging assays, especially fluorescence molecular assays, are minimally invasive if not completely noninvasive, and thus an ideal technique to be applied to live specimens. These fluorescence imaging assays are a powerful tool in biomedical sciences as they allow the study of a wide range of molecular and physiological events occurring in biological systems. Furthermore, optical imaging assays bridge the gap between the cell-based analysis of subcellular processes and study of disease mechanisms in small animal models.
View Article and Find Full Text PDFArterioscler Thromb Vasc Biol
February 2014
From the Center for Cardiovascular Sciences, Albany Medical College, NY (Y.-H.G., S.-H.S., A.P.); and the Institute for Vascular Health and Disease, Albany, NY (P.B.K.).
Objective: Lipid-laden macrophages or foam cells are characterized by massive cytosolic lipid droplet (LD) deposition containing mostly cholesterol ester (CE) derived from the lipoproteins cleared from the arterial wall. Cholesterol efflux from foam cells is considered to be atheroprotective. Because cholesterol is effluxed as free cholesterol, CE accumulation in LDs may limit free cholesterol efflux.
View Article and Find Full Text PDFPLoS One
September 2014
Albany Medical College, The Center for Cardiovascular Sciences, Albany, New York, United States of America.
The conjugation of anti-cancer drugs to endogenous ligands has proven to be an effective strategy to enhance their pharmacological selectivity and delivery towards neoplasic tissues. Since cell proliferation has a strong requirement for iron, cancer cells express high levels of transferrin receptors (TfnR), making its ligand, transferrin (Tfn), of great interest as a delivery agent for therapeutics. However, a critical gap exists in the ability to non-invasively determine whether drugs conjugated to Tfn are internalized into target cells in vivo.
View Article and Find Full Text PDFJ Biol Chem
October 2013
From the Center for Cardiovascular Sciences, Albany Medical College, Albany, New York 12208.
In vascular smooth muscle (VSM) cells, Ca(2+)/calmodulin-dependent protein kinase IIδ2 (CaMKIIδ2) activates non-receptor tyrosine kinases and EGF receptor, with a Src family kinase as a required intermediate. siRNA-mediated suppression of Fyn, a Src family kinase, inhibited VSM cell motility. Simultaneous suppression of both Fyn and CaMKIIδ2 was non-additive, suggesting coordinated regulation of cell motility.
View Article and Find Full Text PDFSci Signal
March 2013
The Center for Cardiovascular Sciences, Albany Medical College, Albany, NY 12208, USA.
Endothelial barrier function is critical for tissue fluid homeostasis, and its disruption contributes to various pathologies, including inflammation and sepsis. Thrombin is an endogenous agonist that impairs endothelial barrier function. We showed that the thrombin-induced decrease in transendothelial electric resistance of cultured human endothelial cells required the endoplasmic reticulum-localized, calcium-sensing protein stromal interacting molecule 1 (STIM1), but was independent of Ca2+ entry across the plasma membrane and the Ca2+ release-activated Ca2+ channel protein Orai1, which is the target of STIM1 in the store-operated calcium entry pathway.
View Article and Find Full Text PDFJ Physiol
September 2012
The Center for Cardiovascular Sciences, Albany Medical College, Albany, NY 12208, USA.
Stromal interaction molecules (STIM1 and STIM2) are single pass transmembrane proteins located mainly in the endoplasmic reticulum (ER). STIM proteins contain an EF-hand in their N-termini that faces the lumen side of the ER allowing them to act as ER calcium (Ca(2+)) sensors. STIM1 has been recognized as central to the activation of the highly Ca(2+) selective store-operated Ca(2+) (SOC) entry current mediated by the Ca(2+) release-activated Ca(2+) (CRAC) channel; CRAC channels are formed by tetramers of the plasma membrane (PM) protein Orai1.
View Article and Find Full Text PDFFront Biosci (Landmark Ed)
June 2010
The Center for Cardiovascular Sciences, Albany Medical College, Albany, NY, USA.
Transient receptor potential canonical (TRPC) proteins constitute a family of seven (TRPC1-7) nonselective cation channels within the wider TRP superfamily. TRPC1, TRPC3, TRPC4, TRPC5 and TRPC6 channels are expressed in vascular smooth muscle cells from human vessels of all calibers and in smooth muscle from organs such as the uterus and the gastrointestinal tract. TRPC channels have recently emerged as important players in the control of smooth muscle function.
View Article and Find Full Text PDFPflugers Arch
February 2010
The Center for Cardiovascular Sciences, Albany Medical College, 47 New Scotland Ave, MC8, Albany, NY 12208, USA.
Transient receptor potential canonical 3 (TRPC3) proteins are nonselective cation channels activated downstream of phospholipase-C-coupled receptors. TRPC3 channels have emerged as major players in the function of the central nervous system. They have been described as important contributors to brain-derived neurotrophic factor mediated survival and growth-cone guidance of cerebellar granule neurons.
View Article and Find Full Text PDFAm J Physiol Cell Physiol
December 2009
The Center for Cardiovascular Sciences, Albany Medical College, NY 12208, USA.
Cdc42GAP (GTPase activating protein) has been shown to regulate smooth muscle contraction as well as cell motility, adhesion, proliferation, and apoptosis. We have recently shown that Cdc42GAP activity is suppressed in smooth muscle cells during contractile activation, which is reversed by inhibitors of reactive oxygen species (ROS). Because p47(phox), a regulatory subunit of NAD(P)H oxidase, has been implicated in smooth muscle signaling, we determined whether this subunit modulates Cdc42GAP activity in response to contractile stimulation.
View Article and Find Full Text PDFAm J Physiol Heart Circ Physiol
August 2009
The Center for Cardiovascular Sciences, Albany Medical College, Albany, New York 12208, USA.
Actin polymerization has recently emerged as an important cellular process that regulates smooth muscle contraction. Abelson tyrosine kinase (Abl) has been implicated in the regulation of actin dynamics and force development in vascular smooth muscle. In the present study, the systolic blood pressure was lower in Abl(-/-) knockout mice compared with wild-type mice.
View Article and Find Full Text PDFAm J Physiol Cell Physiol
August 2009
The Center for Cardiovascular Sciences, Albany Medical College, Albany, NY 12208, USA.
Cdc42GAP (GTPase-activating protein) has been implicated in the regulation of cell motility, adhesion, proliferation, and apoptosis. In this study, Cdc42GAP was cloned from smooth muscle tissues. Cdc42GAP, but not inactive R282A Cdc42GAP (alanine substitution at arginine-282), enhanced the GTP hydrolysis of Cdc42 in an in vitro assay.
View Article and Find Full Text PDFPflugers Arch
August 2008
The Center for Cardiovascular Sciences, Albany Medical College, 47, New Scotland Avenue, MC-8, Albany, NY, 12208, USA.
Calcium (Ca(2+)) is a highly versatile second messenger that controls vascular smooth muscle cell (VSMC) contraction, proliferation, and migration. By means of Ca(2+) permeable channels, Ca(2+) pumps and channels conducting other ions such as potassium and chloride, VSMC keep intracellular Ca(2+) levels under tight control. In healthy quiescent contractile VSMC, two important components of the Ca(2+) signaling pathways that regulate VSMC contraction are the plasma membrane voltage-operated Ca(2+) channel of the high voltage-activated type (L-type) and the sarcoplasmic reticulum Ca(2+) release channel, Ryanodine Receptor (RyR).
View Article and Find Full Text PDFCirculation
October 2003
The Heart Institute and The Center for Cardiovascular Sciences, Albany Medical College, 47 New Scotland Ave, Albany, NY 12208, USA.
Background: The formation of angiotensin-(1-7) from either angiotensin (Ang) I or Ang II in failing human hearts is not well understood.
Methods And Results: Angiotensinase activity in left and right ventricular membranes from 14 idiopathic dilated cardiomyopathy (IDC), 8 primary pulmonary hypertension (PPH), and 13 nonfailing human hearts was measured with either 125I-Ang I or 125I-Ang II as substrate. Ang-(1-7)-forming activity from 125I-Ang I was inhibited by thiorphan.