46 results match your criteria: "The Broad Institute of Harvard University and Massachusetts Institute of Technology[Affiliation]"

The creatine kinase pathway is a metabolic vulnerability in EVI1-positive acute myeloid leukemia.

Nat Med

March 2017

Department of Pediatric Oncology, Dana-Farber Cancer Institute and Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA.

Expression of the MECOM (also known as EVI1) proto-oncogene is deregulated by chromosomal translocations in some cases of acute myeloid leukemia (AML) and is associated with poor clinical outcome. Here, through transcriptomic and metabolomic profiling of hematopoietic cells, we reveal that EVI1 overexpression alters cellular metabolism. A screen using pooled short hairpin RNAs (shRNAs) identified the ATP-buffering, mitochondrial creatine kinase CKMT1 as necessary for survival of EVI1-expressing cells in subjects with EVI1-positive AML.

View Article and Find Full Text PDF

Induction of trained immunity (innate immune memory) is mediated by activation of immune and metabolic pathways that result in epigenetic rewiring of cellular functional programs. Through network-level integration of transcriptomics and metabolomics data, we identify glycolysis, glutaminolysis, and the cholesterol synthesis pathway as indispensable for the induction of trained immunity by β-glucan in monocytes. Accumulation of fumarate, due to glutamine replenishment of the TCA cycle, integrates immune and metabolic circuits to induce monocyte epigenetic reprogramming by inhibiting KDM5 histone demethylases.

View Article and Find Full Text PDF

Mutations in MECP2 cause the neurodevelopmental disorder Rett syndrome (RTT). The RTT missense MECP2 mutation prevents MeCP2 from interacting with the NCoR/histone deacetylase 3 (HDAC3) complex; however, the neuronal function of HDAC3 is incompletely understood. We found that neuronal deletion of Hdac3 in mice elicited abnormal locomotor coordination, sociability and cognition.

View Article and Find Full Text PDF

New Regulatory Roles of Galectin-3 in High-Affinity IgE Receptor Signaling.

Mol Cell Biol

May 2016

Department of Signal Transduction, Institute of Molecular Genetics, Academy of Sciences of the Czech Republic, Prague, Czech Republic

Aggregation of the high-affinity receptor for IgE (FcεRI) in mast cells initiates activation events that lead to degranulation and release of inflammatory mediators. To better understand the signaling pathways and genes involved in mast cell activation, we developed a high-throughput mast cell degranulation assay suitable for RNA interference experiments using lentivirus-based short hairpin RNA (shRNA) delivery. We tested 432 shRNAs specific for 144 selected genes for effects on FcεRI-mediated mast cell degranulation and identified 15 potential regulators.

View Article and Find Full Text PDF

An engineered multicomponent bone marrow niche for the recapitulation of hematopoiesis at ectopic transplantation sites.

J Hematol Oncol

January 2016

Department of Hematology, Oncology, Hemostaseology and Stem Cell Transplantation, University Hospital Aachen, RWTH Aachen University, Aachen, Germany.

Background: Bone marrow (BM) niches are often inaccessible for controlled experimentation due to their difficult accessibility, biological complexity, and three-dimensional (3D) geometry.

Methods: Here, we report the development and characterization of a BM model comprising of cellular and structural components with increased potential for hematopoietic recapitulation at ectopic transplantation sites. Cellular components included mesenchymal stromal cells (MSCs) and hematopoietic stem and progenitor cells (HSPCs).

View Article and Find Full Text PDF

Simple, Scalable Proteomic Imaging for High-Dimensional Profiling of Intact Systems.

Cell

December 2015

Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Broad Institute of Harvard University and Massachusetts Institute of Technology, Cambridge, MA 02142, USA. Electronic address:

Combined measurement of diverse molecular and anatomical traits that span multiple levels remains a major challenge in biology. Here, we introduce a simple method that enables proteomic imaging for scalable, integrated, high-dimensional phenotyping of both animal tissues and human clinical samples. This method, termed SWITCH, uniformly secures tissue architecture, native biomolecules, and antigenicity across an entire system by synchronizing the tissue preservation reaction.

View Article and Find Full Text PDF

The transcription factor nuclear factor κB (NFκB) is a central regulator of inflammation, and genome-wide association studies in subjects with autoimmune disease have identified a number of variants within the NFκB signaling cascade. In addition, causal variant fine-mapping has demonstrated that autoimmune disease susceptibility variants for multiple sclerosis (MS) and ulcerative colitis are strongly enriched within binding sites for NFκB. We report that MS-associated variants proximal to NFκB1 and in an intron of TNFRSF1A (TNFR1) are associated with increased NFκB signaling after tumor necrosis factor-α (TNFα) stimulation.

View Article and Find Full Text PDF

Conserved epigenomic signals in mice and humans reveal immune basis of Alzheimer's disease.

Nature

February 2015

1] Broad Institute of Harvard University and Massachusetts Institute of Technology, Cambridge, Massachusetts 02142, USA [2] Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA.

Alzheimer's disease (AD) is a severe age-related neurodegenerative disorder characterized by accumulation of amyloid-β plaques and neurofibrillary tangles, synaptic and neuronal loss, and cognitive decline. Several genes have been implicated in AD, but chromatin state alterations during neurodegeneration remain uncharacterized. Here we profile transcriptional and chromatin state dynamics across early and late pathology in the hippocampus of an inducible mouse model of AD-like neurodegeneration.

View Article and Find Full Text PDF

Macrophages activated by the TLR4 agonist LPS undergo dramatic changes in their metabolic activity. We here show that LPS induces expression of the key metabolic regulator Pyruvate Kinase M2 (PKM2). Activation of PKM2 using two well-characterized small molecules, DASA-58 and TEPP-46, inhibited LPS-induced Hif-1α and IL-1β, as well as the expression of a range of other Hif-1α-dependent genes.

View Article and Find Full Text PDF

The transmembrane adaptor protein PAG/CBP (here, PAG) is expressed in multiple cell types. Tyrosine-phosphorylated PAG serves as an anchor for C-terminal SRC kinase, an inhibitor of SRC-family kinases. The role of PAG as a negative regulator of immunoreceptor signaling has been examined in several model systems, but no functions in vivo have been determined.

View Article and Find Full Text PDF

Role of casein kinase 1A1 in the biology and targeted therapy of del(5q) MDS.

Cancer Cell

October 2014

Division of Hematology, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA; Broad Institute of Harvard University and Massachusetts Institute of Technology, Cambridge, MA 02142, USA. Electronic address:

The casein kinase 1A1 gene (CSNK1A1) is a putative tumor suppressor gene located in the common deleted region for del(5q) myelodysplastic syndrome (MDS). We generated a murine model with conditional inactivation of Csnk1a1 and found that Csnk1a1 haploinsufficiency induces hematopoietic stem cell expansion and a competitive repopulation advantage, whereas homozygous deletion induces hematopoietic stem cell failure. Based on this finding, we found that heterozygous inactivation of Csnk1a1 sensitizes cells to a CSNK1 inhibitor relative to cells with two intact alleles.

View Article and Find Full Text PDF

Multivariate inference of pathway activity in host immunity and response to therapeutics.

Nucleic Acids Res

January 2015

Center for Computational and Integrative Biology, Massachusetts General Hospital, Boston, MA 02114, USA Gastrointestinal Unit and Center for the Study of Inflammatory Bowel Disease, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA Broad Institute of Harvard University and Massachusetts Institute of Technology, Cambridge, MA 02142, USA

Developing a quantitative view of how biological pathways are regulated in response to environmental factors is central for understanding of disease phenotypes. We present a computational framework, named Multivariate Inference of Pathway Activity (MIPA), which quantifies degree of activity induced in a biological pathway by computing five distinct measures from transcriptomic profiles of its member genes. Statistical significance of inferred activity is examined using multiple independent self-contained tests followed by a competitive analysis.

View Article and Find Full Text PDF

Early remodeling of the neocortex upon episodic memory encoding.

Proc Natl Acad Sci U S A

August 2014

Picower Institute for Learning and Memory, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139;Broad Institute of Harvard University and Massachusetts Institute of Technology, Cambridge, MA 02142; and

Understanding the mechanisms by which long-term memories are formed and stored in the brain represents a central aim of neuroscience. Prevailing theory suggests that long-term memory encoding involves early plasticity within hippocampal circuits, whereas reorganization of the neocortex is thought to occur weeks to months later to subserve remote memory storage. Here we report that long-term memory encoding can elicit early transcriptional, structural, and functional remodeling of the neocortex.

View Article and Find Full Text PDF

Activity-dependent p25 generation regulates synaptic plasticity and Aβ-induced cognitive impairment.

Cell

April 2014

The Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Broad Institute of Harvard University and Massachusetts Institute of Technology, Cambridge, MA 02142, USA. Electronic address:

Cyclin-dependent kinase 5 regulates numerous neuronal functions with its activator, p35. Under neurotoxic conditions, p35 undergoes proteolytic cleavage to liberate p25, which has been implicated in various neurodegenerative diseases. Here, we show that p25 is generated following neuronal activity under physiological conditions in a GluN2B- and CaMKIIα-dependent manner.

View Article and Find Full Text PDF

SYK is a critical regulator of FLT3 in acute myeloid leukemia.

Cancer Cell

February 2014

Department of Pediatric Oncology, Dana-Farber Cancer Institute and Boston Children's Hospital, Harvard Medical School, Boston, MA 02215, USA; The Broad Institute of Harvard University and Massachusetts Institute of Technology, Cambridge, MA 02139, USA. Electronic address:

Cooperative dependencies between mutant oncoproteins and wild-type proteins are critical in cancer pathogenesis and therapy resistance. Although spleen tyrosine kinase (SYK) has been implicated in hematologic malignancies, it is rarely mutated. We used kinase activity profiling to identify collaborators of SYK in acute myeloid leukemia (AML) and determined that FMS-like tyrosine kinase 3 (FLT3) is transactivated by SYK via direct binding.

View Article and Find Full Text PDF

Epigenetic priming of memory updating during reconsolidation to attenuate remote fear memories.

Cell

January 2014

Picower Institute for Learning and Memory, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Howard Hughes Medical Institute, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Broad Institute of Harvard University and Massachusetts Institute of Technology, Cambridge, MA 02142, USA. Electronic address:

Traumatic events generate some of the most enduring forms of memories. Despite the elevated lifetime prevalence of anxiety disorders, effective strategies to attenuate long-term traumatic memories are scarce. The most efficacious treatments to diminish recent (i.

View Article and Find Full Text PDF

A melanocyte lineage program confers resistance to MAP kinase pathway inhibition.

Nature

December 2013

1] The Broad Institute of Harvard University and Massachusetts Institute of Technology, 7 Cambridge Center, Cambridge, Massachusetts 02142, USA [2] Department of Medical Oncology, Dana-Farber Cancer Institute, 44 Binney Street, Boston, Massachusetts 02115, USA [3] Harvard Medical School, 25 Shattuck Street, Boston, Massachusetts 02115, USA.

Malignant melanomas harbouring point mutations (Val600Glu) in the serine/threonine-protein kinase BRAF (BRAF(V600E)) depend on RAF-MEK-ERK signalling for tumour cell growth. RAF and MEK inhibitors show remarkable clinical efficacy in BRAF(V600E) melanoma; however, resistance to these agents remains a formidable challenge. Global characterization of resistance mechanisms may inform the development of more effective therapeutic combinations.

View Article and Find Full Text PDF

Tubacin kills Epstein-Barr virus (EBV)-Burkitt lymphoma cells by inducing reactive oxygen species and EBV lymphoblastoid cells by inducing apoptosis.

J Biol Chem

June 2009

From the Medical Virology Section, Laboratory of Clinical Infectious Diseases, NIAID, National Institutes of Health, Bethesda, Maryland 20892-1888. Electronic address:

Tubacin is a small molecule inhibitor of histone deacetylase 6 and blocks aggresome activity. We found that Epstein-Barr virus (EBV)-positive Burkitt lymphoma (BL) cells were generally killed by lower doses of tubacin than EBV-transformed lymphoblastoid cells (LCLs) or EBV-negative BL cells. Tubacin induced apoptosis of LCLs, which was inhibited by pretreatment with a pancaspase inhibitor but not by butylated hydroxyanisole, which inhibits reactive oxygen species.

View Article and Find Full Text PDF

Bead-based profiling of tyrosine kinase phosphorylation identifies SRC as a potential target for glioblastoma therapy.

Nat Biotechnol

January 2009

The Broad Institute of Harvard University and Massachusetts Institute of Technology, 7 Cambridge Center, Cambridge, Massachusetts 02142, USA.

The aberrant activation of tyrosine kinases represents an important oncogenic mechanism, and yet the majority of such events remain undiscovered. Here we describe a bead-based method for detecting phosphorylation of both wild-type and mutant tyrosine kinases in a multiplexed, high-throughput and low-cost manner. With the aim of establishing a tyrosine kinase-activation catalog, we used this method to profile 130 human cancer lines.

View Article and Find Full Text PDF

Although androgen receptor (AR)-mediated signaling is central to prostate cancer, the ability to modulate AR signaling states is limited. Here we establish a chemical genomic approach for discovery and target prediction of modulators of cancer phenotypes, as exemplified by AR signaling. We first identify AR activation inhibitors, including a group of structurally related compounds comprising celastrol, gedunin, and derivatives.

View Article and Find Full Text PDF

Perturbational profiling of a cell-line model of tumorigenesis by using metabolic measurements.

Proc Natl Acad Sci U S A

April 2005

Howard Hughes Medical Institute, Department of Chemistry and Chemical Biology, Broad Institute of Harvard University and Massachusetts Institute of Technology, Harvard University, Cambridge, MA 02138, USA.

Weinberg and coworkers have used serial transduction of a human, primary fibroblast cell line with the catalytic domain of human telomerase, large T antigen, small T antigen, and an oncogenic allele of H-ras to study stages leading toward a fully transformed cancerous state. We performed a three-dimensional screening experiment using 4 cell lines, 5 small-molecule perturbagens (2-deoxyglucose, oxamate, oligomycin, rapamycin, and wortmannin), and a large number of metabolic measurements. Hierarchical clustering was performed to obtain signatures of the 4 cell lines, 24 cell states, 5 perturbagens, and a number of metabolic parameters.

View Article and Find Full Text PDF