3 results match your criteria: "The Baruch S. Blumberg Research Institute[Affiliation]"

Background & Aims: Integrated HBV DNA (iDNA) plays a critical role in HBV pathogenesis, particularly in predicting treatment response and HCC. This study aimed to use an HBV hybridization-capture next-generation sequencing (HBV-NGS) assay to detect HBV-host junction sequences (HBV-JS) in a sensitive nonbiased manner to detect and estimate the iDNA fraction in tissue biopsies and HBV genetics by liquid biopsy.

Methods: HBV DNA from plasmid monomers, HBV-HCC cell line (SNU398, Hep3B, and PLC/PRF/5), tissue biopsies of patients with serum HBV DNA <4 log IU/ml, and matched urine and plasma of HBV patients were assessed by HBV-NGS.

View Article and Find Full Text PDF

Hepatocellular carcinoma (HCC) is a leading cause of cancer-related deaths worldwide. The beta-catenin gene, is among the most frequently mutated in HCC tissues. However, mutational analysis of HCC tumors is hampered by the difficulty of obtaining tissue samples using traditional biopsy.

View Article and Find Full Text PDF

Chronic hepatitis B virus (HBV) infection is the major etiology of hepatocellular carcinoma (HCC), frequently with HBV integrating into the host genome. HBV integration, found in 85% of HBV-associated HCC (HBV-HCC) tissue samples, has been suggested to be oncogenic. Here, we investigated the potential of HBV-HCC driver identification via the characterization of recurrently targeted genes (RTGs).

View Article and Find Full Text PDF