8 results match your criteria: "The Anvil Institute[Affiliation]"

Article Synopsis
  • * Researchers engineered mouse embryonic stem cells to produce "neutralizing biologics" (nBios) that effectively neutralize SARS-CoV-2 and can be transplanted to provide long-term immune protection.
  • * The study demonstrates that these genetically modified cells can secrete potent nBios over time, suggesting their potential for developing safe, long-lasting cell therapies for viral immunity in the future.
View Article and Find Full Text PDF

Beyond Natural Immune Repertoires: Synthetic Antibodies.

Cold Spring Harb Protoc

April 2024

The Anvil Institute, Kitchener, Ontario N2G 1H6, Canada

Synthetic antibody libraries, in which the antigen-binding sites are precisely designed, offer unparalleled precision in antibody engineering, exceeding the potential of natural immune repertoires and constituting a novel generation of research tools and therapeutics. Recent advances in artificial intelligence-driven technologies and their integration into synthetic antibody discovery campaigns hold the promise to further streamline and effectively develop antibodies. Here, we provide an overview of synthetic antibodies.

View Article and Find Full Text PDF

Synthetic antibody libraries enable the development of antibodies that can recognize virtually any antigen, with affinity and specificity profiles that are superior to those of natural antibodies. By using highly stable and optimized frameworks, synthetic antibody libraries can be rapidly generated by precisely designing synthetic DNA, allowing absolute control over the position and chemical diversity introduced while expanding the sequence space for antigen recognition. Here, we describe a detailed protocol for the generation of highly diverse synthetic antibody phage display libraries based on a single framework, with diversity genetically incorporated by using finely designed mutagenic oligonucleotides.

View Article and Find Full Text PDF

The cullin-RING E3 ligase (CRL) network comprises over 300 unique complexes that switch from inactive to activated conformations upon site-specific cullin modification by the ubiquitin-like protein NEDD8. Assessing cellular repertoires of activated CRL complexes is critical for understanding eukaryotic regulation. However, probes surveying networks controlled by site-specific ubiquitin-like protein modifications are lacking.

View Article and Find Full Text PDF

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic has made it clear that combating coronavirus outbreaks benefits from a combination of vaccines and therapeutics. A promising drug target common to all coronaviruses-including SARS-CoV, MERS-CoV, and SARS-CoV-2-is the papain-like protease (PLpro). PLpro cleaves part of the viral replicase polyproteins into non-structural protein subunits, which are essential to the viral replication cycle.

View Article and Find Full Text PDF

Histone methylation is an important post-translational modification that plays a crucial role in regulating cellular functions, and its dysregulation is implicated in cancer and developmental defects. Therefore, systematic characterization of histone methylation is necessary to elucidate complex biological processes, identify biomarkers, and ultimately, enable drug discovery. Studying histone methylation relies on the use of antibodies, but these suffer from lot-to-lot variation, are costly, and cannot be used in live cells.

View Article and Find Full Text PDF

Antigenic mapping reveals sites of vulnerability on α-HCoV spike protein.

Commun Biol

November 2022

School of Life Science and Technology and Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, 393 Middle Huaxia Road, 201210, Shanghai, China.

Understanding the antigenic signatures of all human coronaviruses (HCoVs) Spike (S) proteins is imperative for pan-HCoV epitopes identification and broadly effective vaccine development. To depict the currently elusive antigenic signatures of α-HCoVs S proteins, we isolated a panel of antibodies against the HCoV-229E S protein and characterized their epitopes and neutralizing potential. We found that the N-terminal domain of HCoV-229E S protein is antigenically dominant wherein an antigenic supersite is present and appears conserved in HCoV-NL63, which holds potential to serve as a pan-α-HCoVs epitope.

View Article and Find Full Text PDF