87 results match your criteria: "Texas Biomedical Device Center[Affiliation]"
Front Behav Neurosci
December 2021
School of Behavior and Brain Sciences, The University of Texas at Dallas, Richardson, TX, United States.
Post-traumatic stress disorder (PTSD) is associated with decreased activity in the prefrontal cortex. PTSD-like pathophysiology and behaviors have been observed in rodents exposed to a single prolonged stress (SPS) procedure. When animals are left alone for 7 days after SPS treatment, they show increased anxiety-like behavior and impaired extinction of conditioned fear, and reduced activity in the prefrontal cortex.
View Article and Find Full Text PDFNeuroscience
November 2021
The University of Texas at Dallas, Texas Biomedical Device Center, 800 West Campbell Road BSB11, Richardson, TX 75080, USA; The University of Texas at Dallas, School of Behavioral and Brain Sciences, 800 West Campbell Road BSB11, Richardson, TX 75080, USA.
Intense noise exposure is a leading cause of hearing loss, which results in degraded speech sound discrimination ability, particularly in noisy environments. The development of an animal model of speech discrimination deficits due to noise induced hearing loss (NIHL) would enable testing of potential therapies to improve speech sound processing. Rats can accurately detect and discriminate human speech sounds in the presence of quiet and background noise.
View Article and Find Full Text PDFBehav Brain Res
January 2022
Psychobiology Group/Department of Psychology/CECH-UFSCar, São Carlos, SP 13565-905, Brazil; Joint Graduate Program in Physiological Sciences UFSCar/UNESP, Rod. Washington Luís, Km 235, São Carlos, SP 13565-905, Brazil; Graduate Program in Psychology UFSCar, Rod. Washington Luís, Km 235, São Carlos, SP 13565-905, Brazil; Neuroscience and Behavioral Institute, Av. do Café, 2.450, 14050-220 Ribeirão Preto, SP, Brazil. Electronic address:
The monoamine neurotransmitter serotonin (5-HT) modulates anxiety by its activity on 5-HT receptors (5-HTR) expressed in the dorsal periaqueductal gray (dPAG). Here, we investigated the presence of 5-HT receptors (5-HTR) in the dPAG, and the interplay between 5-HTR and 5-HTR in the dPAG in mediating anxiety-like behavior in mice. We found that 5-HTR is expressed in the dPAG and the blockade of these receptors using intra-dPAG infusion of ondansetron (5-HTR antagonist; 3.
View Article and Find Full Text PDFFront Neurosci
August 2021
School of Behavioral and Brain Sciences, University of Texas at Dallas, Richardson, TX, United States.
Stroke often leaves lasting impairments affecting orofacial function. While speech therapy is able to enhance function after stroke, many patients see only modest improvements after treatment. This partial restoration of function after rehabilitation suggests that there is a need for further intervention.
View Article and Find Full Text PDFJ Neural Eng
August 2021
The University of Texas at Dallas, Erik Jonsson School of Engineering and Computer Science, 800 W Campbell Road, Richardson, TX, United States of America.
Peripheral nerve stimulation is an effective treatment for various neurological disorders. The method of activation and stimulation parameters used impact the efficacy of the therapy, which emphasizes the need for tools to model this behavior. Computational modeling of nerve stimulation has proven to be a useful tool for estimating stimulation thresholds, optimizing electrode design, and exploring previously untested stimulation methods.
View Article and Find Full Text PDFExp Neurol
July 2021
Texas Biomedical Device Center, The University of Texas at Dallas, 800 West Campbell Road, Richardson, TX 75080, United States; School of Behavioral Brain Sciences, The University of Texas at Dallas, 800 West Campbell Road, Richardson, TX 75080, United States.
Studies in rodents indicate that pairing vagus nerve stimulation (VNS) with extinction training enhances fear extinction. However, the role of stimulation parameters on the effects of VNS remains largely unknown. Identifying the optimal stimulation intensity is a critical step in clinical translation of neuromodulation-based therapies.
View Article and Find Full Text PDFNeurobiol Learn Mem
May 2021
Texas Biomedical Device Center, The University of Texas at Dallas, 800 West Campbell Road, Richardson, TX 75080, United States; School of Behavioral Brain Sciences, The University of Texas at Dallas, 800 West Campbell Road, Richardson, TX 75080, United States.
Traumatic experiences involve complex sensory information, and individuals with trauma-related psychological disorders, such as posttraumatic stress disorder (PTSD), can exhibit abnormal fear to numerous different stimuli that remind them of the trauma. Vagus nerve stimulation (VNS) enhances extinction of auditory fear conditioning in rat models for PTSD. We recently found that VNS-paired extinction can also promote extinction generalization across different auditory cues.
View Article and Find Full Text PDFBrain Res
April 2021
The University of Texas at Dallas, School of Behavioral Brain Sciences, Richardson, TX, United States; The University of Texas at Dallas, Texas Biomedical Device Center, Richardson, TX, United States; The University of Texas at Dallas, Erik Jonsson School of Engineering and Computer Science, Richardson, TX, United States.
Vagus nerve stimulation (VNS) paired with motor rehabilitation enhances recovery of function after neurological injury in rats and humans. This effect is ascribed to VNS-dependent facilitation of plasticity in motor networks. Previous studies document an inverted-U relationship between VNS intensity and cortical plasticity, such that moderate intensities increase plasticity, while low or high intensity VNS does not.
View Article and Find Full Text PDFJ Neurodev Disord
September 2020
School of Behavioral and Brain Sciences, The University of Texas at Dallas, 800 West Campbell Road, Richardson, TX, 75080-3021, USA.
Background: Rett syndrome is an X-linked neurodevelopmental disorder caused by a mutation in the gene MECP2. Individuals with Rett syndrome display developmental regression at an early age, and develop a range of motor, auditory, cognitive, and social impairments. Several studies have successfully modeled some aspects of dysfunction and Rett syndrome-like phenotypes in transgenic mouse and rat models bearing mutations in the MECP2 gene.
View Article and Find Full Text PDFBehav Brain Res
January 2021
The University of Texas at Dallas, Texas Biomedical Device Center, 800 West Campbell Road, Richardson, TX 75080-3021, United States; The University of Texas at Dallas, Erik Jonsson School of Engineering and Computer Science, Department of Bioengineering, 800 West Campbell Road, Richardson, TX 75080-3021, United States; The University of Texas at Dallas, School of Behavioral and Brain Sciences, 800 West Campbell Road, Richardson, TX 75080-3021, United States.
Loss of sensory function is a common consequence of neurological injury. Recent clinical and preclinical evidence indicates vagus nerve stimulation (VNS) paired with tactile rehabilitation, consisting of delivery of a variety of mechanical stimuli to the hyposensitive skin surface, yields substantial and long-lasting recovery of somatosensory function after median and ulnar nerve transection and repair. Here, we tested the hypothesis that a specific component of the tactile rehabilitation paired with VNS is necessary for recovery of somatosensory function.
View Article and Find Full Text PDFBrain Stimul
March 2021
The University of Texas at Dallas, Texas Biomedical Device Center, 800 West Campbell Road BSB11, Richardson, TX, 75080, USA; The University of Texas at Dallas, School of Behavioral and Brain Sciences, 800 West Campbell Road BSB11, Richardson, TX, 75080, USA; The University of Texas at Dallas, Erik Jonsson School of Engineering and Computer Science, 800 West Campbell Road BSB11, Richardson, TX, 75080, USA. Electronic address:
Background: Rett syndrome is a rare neurological disorder associated with a mutation in the X-linked gene MECP2. This disorder mainly affects females, who typically have seemingly normal early development followed by a regression of acquired skills. The rodent Mecp2 model exhibits many of the classic neural abnormalities and behavioral deficits observed in individuals with Rett syndrome.
View Article and Find Full Text PDFJ Vis Exp
July 2020
School of Behavioral and Brain Sciences, University of Texas at Dallas;
Peripheral nerve cuff electrodes have long been used in the neurosciences and related fields for stimulation of, for example, vagus or sciatic nerves. Several recent studies have demonstrated the effectiveness of chronic VNS in enhancing central nervous system plasticity to improve motor rehabilitation, extinction learning, and sensory discrimination. Construction of chronically implantable devices for use in such studies is challenging due to rats' small size, and typical protocols require extensive training of personnel and time-consuming microfabrication methods.
View Article and Find Full Text PDFTransl Stroke Res
February 2021
Texas Biomedical Device Center, BSB11 800 W Campbell Rd, Richardson, TX, 75080, USA.
Vagus nerve stimulation (VNS) paired with rehabilitative training enhances recovery of function in models of stroke and is currently under investigation for use in chronic stroke patients. Dosing is critical in translation of pharmacological therapies, but electrical stimulation therapies often fail to comprehensively explore dosing parameters in preclinical studies. Varying VNS parameters has non-monotonic effects on plasticity in the central nervous system, which may directly impact efficacy for stroke.
View Article and Find Full Text PDFNeuroscience
August 2020
Texas Biomedical Device Center, Richardson, TX 75080, United States; The University of Texas at Dallas, School of Behavioral Brain Sciences, 800 West Campbell Road, GR 41, Richardson, TX 75080-3021, United States.
Behav Brain Res
August 2020
The University of Texas at Dallas, Texas Biomedical Device Center, Richardson, TX, United States; The University of Texas at Dallas, Erik Jonsson School of Engineering and Computer Science, Richardson, TX, United States.
Pairing vagus nerve stimulation (VNS) with rehabilitation has emerged as a potential strategy to improve recovery after neurological injury, an effect ascribed to VNS-dependent enhancement of synaptic plasticity. Previous studies demonstrate that pairing VNS with forelimb training increases forelimb movement representations in motor cortex. However, it is not known whether VNS-dependent enhancement of plasticity is restricted to forelimb training or whether VNS paired with other movements could induce plasticity of other motor representations.
View Article and Find Full Text PDFExp Neurol
May 2020
The University of Texas at Dallas, Erik Jonsson School of Engineering and Computer Science, Richardson, TX, United States of America; The University of Texas at Dallas, School of Behavioral Brain Sciences, Richardson, TX, United States of America; Texas Biomedical Device Center, Richardson, TX, United States of America.
Vagus nerve stimulation (VNS) has rapidly gained interest as a treatment for a variety of disorders. A number of methods have been employed to stimulate the vagus nerve, but the most common relies on a cuff electrode implanted around the cervical branch of the nerve. Recently, two non-invasive methods have increased in popularity: transcutaneous cervical VNS (tcVNS) and transcutaneous auricular VNS (taVNS).
View Article and Find Full Text PDFJ Neurotrauma
May 2020
Erik Jonsson School of Engineering and Computer Science, The University of Texas at Dallas, Richardson, Texas, USA.
Pairing vagus nerve stimulation (VNS) with rehabilitation has emerged as a potential strategy to enhance plasticity and improve recovery in a range of neurological disorders. A recent study highlights the therapeutic promise of VNS in promoting motor recovery after spinal cord injury (SCI). We investigated the safety of acute VNS in a rat model of chronic SCI.
View Article and Find Full Text PDFAnn Neurol
February 2020
Texas Biomedical Device Center, University of Texas at Dallas, Richardson, TX.
Objective: Sensory dysfunction is a common consequence of many forms of neurological injury, including stroke and nerve damage. Rehabilitative paradigms that incorporate sensory retraining can provide modest benefits, but the majority of patients are left with lasting sensory loss. We have developed a novel strategy that uses closed-loop vagus nerve stimulation (VNS) paired with tactile rehabilitation to enhance synaptic plasticity and facilitate recovery of sensory function.
View Article and Find Full Text PDFProg Neuropsychopharmacol Biol Psychiatry
April 2020
Texas Biomedical Device Center, The University of Texas at Dallas, 800 West Campbell Road, Richardson, TX 75080, United States of America; School of Behavioral Brain Sciences, The University of Texas at Dallas, 800 West Campbell Road, Richardson, TX 75080, United States of America.
Vagus nerve stimulation (VNS) has shown promise as an adjuvant treatment for posttraumatic stress disorder (PTSD), as it enhances fear extinction and reduces anxiety symptoms in multiple rat models of this condition. Yet, identification of the optimal stimulation paradigm is needed to facilitate clinical translation of this potential therapy. Using an extinction-resistant rat model of PTSD, we tested whether varying VNS intensity and duration could maximize extinction learning while minimizing the total amount of stimulation.
View Article and Find Full Text PDFNat Commun
December 2019
Texas Biomedical Device Center, The University of Texas at Dallas, 800 West Campbell Road, Richardson, TX, 75080-3021, USA.
Nerve damage can cause chronic, debilitating problems including loss of motor control and paresthesia, and generates maladaptive neuroplasticity as central networks attempt to compensate for the loss of peripheral connectivity. However, it remains unclear if this is a critical feature responsible for the expression of symptoms. Here, we use brief bursts of closed-loop vagus nerve stimulation (CL-VNS) delivered during rehabilitation to reverse the aberrant central plasticity resulting from forelimb nerve transection.
View Article and Find Full Text PDFJ Affect Disord
March 2020
Texas Biomedical Device Center, The University of Texas at Dallas, 800 West Campbell Road, Richardson, TX 75080, United States; School of Behavioral Brain Sciences, The University of Texas at Dallas, 800 West Campbell Road, Richardson, TX 75080, United States. Electronic address:
Background: Chronic vagus nerve stimulation (VNS) attenuates anxiety in rats and humans. However, it is unclear whether VNS can promote acute anxiolytic effects. Here we examined short-term anxiolytic effects of VNS using single or multiple trains in rats submitted to a battery of tests.
View Article and Find Full Text PDFPLoS One
March 2020
The University of Texas at Dallas, Erik Jonsson School of Engineering and Computer Science, Richardson, Texas, United States of America.
The majority of available systems for vagus nerve stimulation use helical stimulation electrodes, which cover the majority of the circumference of the nerve and produce largely uniform current density within the nerve. Flat stimulation electrodes that contact only one side of the nerve may provide advantages, including ease of fabrication. However, it is possible that the flat configuration will yield inefficient fiber recruitment due to a less uniform current distribution within the nerve.
View Article and Find Full Text PDFExp Brain Res
September 2019
Texas Biomedical Device Center, The University of Texas at Dallas, 800 West Campbell Road, Richardson, TX, 75080-3021, USA.
Incomplete recovery of sensory function is common after peripheral nerve injury (PNI). Despite reinnervation following injury, disorganized cortical representations persist and may contribute to functional deficits. There is a dearth of literature characterizing cortical responses after PNI in rodent models.
View Article and Find Full Text PDFJ Neurophysiol
August 2019
The University of Texas at Dallas, Texas Biomedical Device Center, Richardson, Texas.
Previous studies have demonstrated that pairing vagus nerve stimulation (VNS) with sounds can enhance the primary auditory cortex (A1) response to the paired sound. The neural response to sounds following VNS-sound pairing in other subcortical and cortical auditory fields has not been documented. We predicted that VNS-tone pairing would increase neural responses to the paired tone frequency across the auditory pathway.
View Article and Find Full Text PDFLearn Mem
July 2019
School of Behavior and Brain Sciences, The University of Texas at Dallas, Richardson, Texas 75080-3021, USA.
Vagus nerve stimulation (VNS) enhances extinction of conditioned fear in rats. Previous findings support the hypothesis that VNS effects on extinction are due to enhanced consolidation of extinction memories through promotion of plasticity in extinction-related brain pathways however, alternative explanations are plausible. According to one hypothesis, VNS may produce a hedonic effect and enhance extinction through counter-conditioning.
View Article and Find Full Text PDF