135,325 results match your criteria: "Technology and Engineering Group; NASA Johnson Space Center[Affiliation]"

Bone defects are difficult to treat clinically and most often require bone grafting for repair. However, the source of autograft bone is limited, and allograft bone carries the risk of disease transmission and immune rejection. As tissue engineering technology advances, bone replacement materials are playing an increasingly important role in the treatment of bone defects.

View Article and Find Full Text PDF

Mild [3 + 3] Annulation of (Trifluoromethyl)alkenes with Thioureas Enabled by Chemoselective Defluorinative Amination: Synthesis of 6-Fluoro-3,4-dihydropyrimidine-2(1)-thiones.

J Org Chem

January 2025

School of Chemistry and Chemical Engineering, Key Laboratory of Functional Molecular Engineering of Guangdong Province, South China University of Technology, Guangzhou 510640, China.

The chemoselective defluorinative [3 + 3] annulation of (trifluoromethyl)alkenes with thioureas is reported. This protocol affords various attractive 6-fluoro-3,4-dihydropyrimidine-2(1)-thiones in high yields, features transition-metal free, mild conditions, efficient, is operationally simple and gram-scalable, tolerates diverse useful functional groups.

View Article and Find Full Text PDF

Mononuclear Fe enzymes such as heme-containing cytochrome P450 enzymes catalyze a variety of C-H activation reactions under ambient conditions, and they represent an attractive platform for engineering reactivity through changes to the native enzyme. Using density functional theory, we study both native Fe and non-native group 8 (Ru, Os) and group 9 (Ir) metal centers in an active site model of P450. We quantify how changing the metal changes spin state preferences throughout the catalytic cycle.

View Article and Find Full Text PDF

Spontaneous neural activity coherently relays information across the brain. Several efforts have been made to understand how spontaneous neural activity evolves at the macro-scale level as measured by resting-state functional magnetic resonance imaging (rsfMRI). Previous studies observe the global patterns and flow of information in rsfMRI using methods such as sliding window or temporal lags.

View Article and Find Full Text PDF

Exploring the Impact of Declarative Learning on the Consolidation of Acquired Motor Skills Under Valence Feedback.

Hum Brain Mapp

February 2025

Neuroscience and Neuroengineering Research Laboratory, Biomedical Engineering Department, School of Electrical Engineering, Iran University of Science and Technology (IUST), Tehran, Iran.

Implicit motor learning involves the acquisition and consolidation of motor skills without conscious awareness, influenced by various factors. Punishment and reward have been identified as significant modulators during training, impacting skill acquisition differently. Additionally, the role of a second declarative task in offline consolidation has been explored, affecting both stabilization and enhancement processes during wake and sleep periods.

View Article and Find Full Text PDF

Trivalent chromium (Cr) is a heavy metal widely present in tannery wastewater, and organic ligands represented by gallic acid (GA) have significant effects on the environmental behavior of Cr. This study explored the binding process of Cr with GA through the integration of ultraviolet-visible (UV-vis), Fourier transform infrared (FTIR), and fluorescence spectroscopy coupled with two-dimensional correlation analyses (2DCOS). UV-vis results showed that the average molecular weight of the solutions gradually increased with the addition of Cr ions.

View Article and Find Full Text PDF

Background: Canna edulis is a high-quality resistant starch raw material, especially for making flour products. This study aimed to investigate the effect of Canna edulis starch (CES) on the properties of flour, rheology of dough and quality of semi-dry noodles. The CES replaced part of the wheat flour in the semi-dry noodle formula.

View Article and Find Full Text PDF

Background: Hypertension, a leading global risk factor for mortality and disability, disproportionately affects racial and ethnic minorities. Our study investigates the association between the type of prior antihypertensive medication use and the likelihood of cardiovascular events (CVE) and assesses whether the patient's race influences this relationship.

Methods: A retrospective study of 14 836 hypertension cases aged ≥ 40 years was conducted using data from HCA Healthcare between 2017 and 2023.

View Article and Find Full Text PDF

Background And Aim: Hyperventilation before breath-hold diving (freediving) is widely accepted as a risk factor for hypoxic syncope or blackout (BO), but there is no practical way to address it before dives. This study explores the feasibility of using a force sensor to predict end-tidal carbon dioxide ( CO) to assess hyperventilation in freedivers.

Methods And Results: Twenty-one freedivers volunteered to participate during two national competitions.

View Article and Find Full Text PDF

Carbonic Anhydrase IX Targeted Polyaspartamide fluorescent Probes for Tumor imaging.

Int J Nanomedicine

January 2025

College of Chemical and Material Engineering, Quzhou University, Quzhou, Zhejiang Province, 324000, People's Republic of China.

Background: Precise intraoperative tumor delineation is essential for successful surgical outcomes. However, conventional methods are often incompetent to provide intraoperative guidance due to lack specificity and sensitivity. Recently fluorescence-guided surgery for tumors to delineate between cancerous and healthy tissues has attracted widespread attention.

View Article and Find Full Text PDF

Enhancing efficiency and stability in perovskite solar cells: innovations in self-assembled monolayers.

Front Chem

January 2025

Key laboratory of Rubber-Plastic of Ministry of Education /Shandong Province (QUST), School of Polymer Science and Engineering, Qingdao University of Science and Technology, Qingdao, China.

Perovskite solar cells (PVSCs) show remarkable potential due to their high-power conversion efficiencies and scalability. However, challenges related to stability and long-term performance remain significant. Self-assembled monolayers (SAMs) have emerged as a crucial solution, enhancing interfacial properties, facilitating hole extraction, and minimizing non-radiative recombination.

View Article and Find Full Text PDF

Nuclear factor-κB (NF-κB) cell signaling pathway is essential for the progression and development of numerous human disorders, including cancer. NF-κB signaling pathway regulates a wide range of physiological processes, such as cell survival, growth, and migration. Deregulated NF-kB signaling resulted in unregulated cell proliferation, viability, movement, and invasion, thus promoting tumor development.

View Article and Find Full Text PDF

Background: Functional magnetic resonance imaging (fMRI) has revolutionized our understanding of brain activity by non-invasively detecting changes in blood oxygen levels. This review explores how fMRI is used to study mind-reading processes in adults.

Methodology: A systematic search was conducted across Web of Science, PubMed, and Google Scholar.

View Article and Find Full Text PDF

Design of a wasp-inspired biopsy needle capable of self-propulsion and friction-based tissue transport.

Front Bioeng Biotechnol

January 2025

Department of BioMechanical Engineering, Bio-Inspired Technology Group, Faculty of Mechanical Engineering, Delft University of Technology, Delft, Netherlands.

Percutaneous pancreatic core biopsy is conclusive but challenging due to large-diameter needles, while smaller-diameter needles used in aspiration methods suffer from buckling and clogging. Inspired by the ovipositor of parasitic wasps, which resists buckling through self-propulsion and prevents clogging via friction-based transport, research has led to the integration of these functionalities into multi-segment needle designs or tissue transport system designs. This study aimed to combine these wasp-inspired functionalities into a single biopsy needle by changing the interconnection of the needle segments.

View Article and Find Full Text PDF

This study investigates the mechanical properties as well as and cyto- and biocompatibility of collagen membranes cross-linked with glutaraldehyde (GA), proanthocyanidins (PC), hexamethylendiisocyanate (HMDI) and 1-Ethyl-3-(3-dimethylaminopropyl) carbodiimide/N-hydroxysuccinimide (EC/NHS). A non-crosslinked membrane was used as reference control (RF). The initial cytotoxic analyses revealed that the PC, EC, and HMDI crosslinked membranes were cytocompatible, while the GA crosslinked membrane was cytotoxic and thus selected as positive control in the further study.

View Article and Find Full Text PDF

Marfan syndrome: insights from animal models.

Front Genet

January 2025

Sichuan Provincial Key Laboratory for Genetic Disease, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China.

Marfan syndrome (MFS) is an inherited disorder that affects the connective tissues and mainly presents in the bones, eyes, and cardiovascular system, etc. Aortic pathology is the leading cause of death in patients with Marfan syndrome. The fibrillin-1 gene () is a major gene involved in the pathogenesis of MFS.

View Article and Find Full Text PDF

The development of an effective and rapid method for healing the skin is of crucial importance. In this study, we prepared a porous scaffold made of polycaprolactone (PCL) and carbon quantum dots (CQDs), Fe, and Chitosan (Cs) as the scaffold core to cover the skin. Then evaluated antibacterial, biocompatibility, and wound healing properties as well as the expression of genes effective in wound healing.

View Article and Find Full Text PDF

Background: Type 2 diabetes mellitus (T2DM) is a global health crisis linked to increased cardiovascular risk. Research indicates that better dietary quality-higher intake of fruits, vegetables, and whole grains, and lower intake of processed foods-reduces T2DM risk. This study examines the relationship between T2DM and dietary quality indices (DQI-I and DQI-R) to determine if adherence can lower diabetes risk.

View Article and Find Full Text PDF

Understanding the biomechanics of osteoarthritis is necessary for designing a biomedical knee implant to reduce pain, increase mobility, and enhance the patient's quality of life. The most appropriate implant design may be chosen by using Multi-Attribute Group Decision-Making (MAGDM) techniques, which include a number of variables including material characteristics, biomechanical performance, cost-effectiveness, and patient-specific requirements. Compared to conventional fuzzy set structures, Spherical Fuzzy -Number Sets ( S) provide an enhanced method for resolving uncertainty in MAGDM and are more suited for handling complicated decision-making situations.

View Article and Find Full Text PDF

Meibomian gland alterations in allergic conjunctivitis: insights from a novel quantitative analysis algorithm.

Front Cell Dev Biol

January 2025

Fujian Provincial Hospital, Shengli Clinical Medical College of Fujian Medical University, Fuzhou University Affiliated Provincial Hospital, Fuzhou, China.

Purpose: To investigate the changes in meibomian gland (MG) structure in allergic conjunctivitis (AC) patients using an intelligent quantitative analysis algorithm and to explore the relationship between these changes and clinical parameters.

Methods: A total of 252 eyes from patients with AC and 200 eyes from normal controls were examined. Infrared meibography was performed using the non-contact mode of the Keratograph 5M.

View Article and Find Full Text PDF

The precise and rapid extraction of lithium from salt-lake brines is critical to meeting the global demand for lithium resources. However, it remains a major challenge to design ion-transport membranes with accurate recognition and fast transport path for the target ion. Here, we report a triazine covalent organic framework (COF) membrane with high resolution for Li+ and Mg2+ that enables fast Li+ transport while almost completely inhibiting Mg2+ permeation.

View Article and Find Full Text PDF

1-Isochromene scaffolds are ubiquitous in natural products and significant bioactive molecules. Although several methods for these molecular syntheses have been developed, reports on the efficient construction of iminated isochromenes are still rather limited. Herein, we report a new Cu(II)-catalyzed annulation and sulfonylimination cascade of α-carbonyl-γ-alkynyl sulfoxonium ylides with sulfamides, enabling direct C-C σ-bond elimination to furnish iminated ()-1-isochromenes in 51-97% yields.

View Article and Find Full Text PDF

Coplanar Dimeric Acceptors with Bathochromic Absorption and Torsion-Free Backbones through Precise Fluorination Enabling Efficient Organic Photovoltaics with 18.63% Efficiency.

Adv Sci (Weinh)

January 2025

Guangdong-Hong Kong Joint Laboratory for Carbon Neutrality, Jiangmen Laboratory of Carbon Science and Technology, Jiangmen, Guangdong, 529199, P. R. China.

Giant dimeric acceptors (GDAs), a sub-type of acceptor materials for organic solar cells (OSCs), have garnered much attention due to the synergistic advantages of their monomeric and polymeric acceptors, forming a well-defined molecular structure with a giant molecular weight for high efficiency and stability. In this study, for the first time, two new GDAs, DYF-V and DY2F-V are designed and synthesized for OSC operation, by connecting one vinylene linker with the mono-/di-fluorinated end group on two Y-series monomers, respectively. After fluorination, both DYF-V and DY2F-V exhibit bathochromic absorption and denser packing modes due to the stronger intramolecular charge transfer effect and torsion-free backbones.

View Article and Find Full Text PDF

Next generation bioelectronic medicine: making the case for non-invasive closed-loop autonomic neuromodulation.

Bioelectron Med

January 2025

SecondWave Systems Incorporated, Head Quarters, Minneapolis-Saint Paul, MN, 55104, USA.

The field of bioelectronic medicine has advanced rapidly from rudimentary electrical therapies to cutting-edge closed-loop systems that integrate real-time physiological monitoring with adaptive neuromodulation. Early innovations, such as cardiac pacemakers and deep brain stimulation, paved the way for these sophisticated technologies. This review traces the historical and technological progression of bioelectronic medicine, culminating in the emerging potential of closed-loop devices for multiple disorders of the brain and body.

View Article and Find Full Text PDF

Strategies for strengthening cervical cancer screening programmes in Gwanda district, Zimbabwe: a qualitative study.

BMC Public Health

January 2025

Department of Global Health, Division of Health Systems and Public Health, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa.

Background: Numerous studies have been conducted on barriers to cervical cancer screening in low resourced settings. Few have however explored the factors that motivate women to make the decision for screening. This study therefore aimed at identifying strategies that could strengthen the utilisation of screening services, with the goal of informing the development of context for enhancing cervical cancer programmes in Gwanda district, Zimbabwe.

View Article and Find Full Text PDF