3 results match your criteria: "Technical University of Denmark DK-2800 Kongens Lyngby Denmark cq@kemi.dtu.dk.[Affiliation]"

In this research, we demonstrate a facile approach for the synthesis of a graphite-analogous layer-by-layer heterostructured CuO/ZnO/carbon paper using a graphene oxide paper as a sacrificial template. Cu and Zn were inserted into the interlayer of graphene oxide papers physical absorption and electrostatic effects and then, the M -graphene oxide paper was annealed in air to generate 2D nanoporous CuO/ZnO nanosheets. Due to the graphene oxide template, the structure of the obtained CuO/ZnO nanosheets with an average size of ∼50 nm was duplicated from the graphene oxide paper, which displayed a layer-by-layer structure on the microscale.

View Article and Find Full Text PDF

Application of enzymatic biofuel cells (EBFCs) in wearable or implantable biomedical devices requires flexible and biocompatible electrode materials. To this end, freestanding and low-cost graphene paper is emerging among the most promising support materials. In this work, we have exploited the potential of using graphene paper with a two-dimensional active surface (2D-GP) as a carrier for enzyme immobilization to fabricate EBFCs, representing the first case of flexible graphene papers directly used in EBFCs.

View Article and Find Full Text PDF