4,071 results match your criteria: "Tata Institute of Fundamental Research; shivaprasad@ncbs.res.in.[Affiliation]"

We consider an analytically tractable model that exhibits the main features of the Page curve characterizing the evolution of entanglement entropy during evaporation of a black hole. Our model is a gas of noninteracting fermions on a lattice that is released from a box into the vacuum. More precisely, our Hamiltonian is a tight-binding model with a defect at the junction between the filled box and the vacuum.

View Article and Find Full Text PDF

Lower-dimensional organic-inorganic hybrid perovskite materials promise to revolutionize the optoelectronics industry due to the tremendous possibilities of exotic control on excitonic properties driven via quantum confinement. Flexible organic cations acting as spacers and stabilizers enhance electron-phonon couplings, further amplifying the potential for modular light-matter interactions in these materials. Herein we unravel the nature of excitons in a quasi-1D chain of corner-sharing bismuth iodide octahedra with an intrinsic quantum well structure stabilized by a hexyl-diammonium cation.

View Article and Find Full Text PDF

Nuclear magnetic resonance (NMR) spectroscopy is an important technique for deriving the dynamics and interactions of macromolecules; however, characterizations of aromatic residues in proteins still pose a challenge. Here, we present a deep neural network (DNN), which transforms NMR spectra recorded on simple uniformly C-labeled samples to yield high-quality H-C correlation maps of aromatic side chains. Key to the success of the DNN is the design of NMR experiments that produce data with unique features to aid the DNN produce high-resolution spectra.

View Article and Find Full Text PDF

Motor Function of the Two-Component EEA1-Rab5 Revealed by dcFCCS.

Methods Mol Biol

December 2024

Simons Centre for the Study of Living Machines, National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bangalore, India.

Fluorescence correlation spectroscopy (FCS) enables the measurement of fluctuations at fast timescales (typically few nanoseconds) and with high spatial resolution (tens of nanometers). This single-molecule measurement has been used to characterize single-molecule transport and flexibility of polymers and biomolecules such as DNA and RNA. Here, we apply this technique as dual-color fluorescence cross-correlation spectroscopy (dcFCCS) to identify the motor function of the tethering protein EEA1 and the small GTPase Rab5 by probing the flexibility changes through end-monomer fluctuations.

View Article and Find Full Text PDF

The mis-folding and aggregation of intrinsically disordered proteins (IDPs) such as α-synuclein (αS) underlie the pathogenesis of various neurodegenerative disorders. However, targeting αS with small molecules faces challenges due to the lack of defined ligand-binding pockets in its disordered structure. Here, we implement a deep artificial neural network-based machine learning approach, which is able to statistically distinguish the fuzzy ensemble of conformational substates of αS in neat water from those in aqueous fasudil (small molecule of interest) solution.

View Article and Find Full Text PDF

Sequence of the SARS-CoV-2 Spike Transmembrane Domain Encodes Conformational Dynamics.

J Phys Chem B

December 2024

Simons Centre for the Study of Living Machines, National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bangalore 560065, India.

The homotrimeric SARS-CoV-2 spike protein enables viral infection by undergoing a large conformational transition, which facilitates the fusion of the viral envelope with the host cell membrane. The spike protein is anchored to the SARS-CoV-2 envelope by its transmembrane domain (TMD), composed of three TM helices, each contributed by one of the protomers of spike. Although the TMD is known to be important for viral fusion, whether it is a passive anchor of the spike or actively promotes fusion remains unknown.

View Article and Find Full Text PDF

Wound healing is a complex biological process critical for maintaining an organism's structural integrity and tissue repair following an infection or injury. Recent studies have unveiled the mechanisms involving the coordination of biochemical and mechanical responses in the tissue in wound healing. In this article, we focus on the healing property of an epithelial tissue as a material while the effects of biological mechanisms such as cell proliferation, tissue intercalation, cellular migration, cell crawling, and filopodia protrusion is minimal.

View Article and Find Full Text PDF

Background: Frankliniella schultzei (Trybom) is a serious pest and a carrier of tospoviruses in major agricultural crops. This species is a historical and unresolved species complex that contains genetically different cryptic species across the globe.

Methods And Results: DNA barcodes were generated from freshly collected specimens of F.

View Article and Find Full Text PDF

The transportation of ions across cell membranes is vital in biological functions and is frequently controlled by external triggers like light, ligands, and voltage. Synthetic ion transport systems, particularly those featuring gating mechanisms, have attracted considerable interest. In this research, we engineered self-assembled barrel rosette ion channels using a photoresponsive azobenzene integrated at an allosteric site.

View Article and Find Full Text PDF

Incidence and severity of prostate cancer (PrCa) substantially varies across ancestries. American men of African ancestry (AA) are more likely to be diagnosed with and die from PrCa than the those of European ancestry (EA). Published polygenic risk scores for developing prostate cancer, even those based on multi-ancestry genome-wide association studies, do not address population-specific genetic mechanisms underlying PrCa risk in men of African ancestry.

View Article and Find Full Text PDF

Time memory in social insects with a special focus on honey bees.

Curr Opin Insect Sci

December 2024

Behavioral Physiology & Sociobiology, Biocentre, University of Würzburg, Würzburg, Germany. Electronic address:

The ability to associate time and location with food sources is an evolutionary advantage for foraging animals. We find highly sophisticated time memory capabilities especially in social insects, which require efficient foraging capabilities for colony provisioning. Honey bees are perfectly suitable to study time memory mechanisms: they possess an elaborated time memory combined with a relatively simple neuronal clock network and a smaller gene set compared with the mouse model organism.

View Article and Find Full Text PDF

Multiscale simulations reveal architecture of NOTCH protein and ligand specific features.

Biophys J

December 2024

CSIR-Institute of Genomics and Integrative Biology, New Delhi, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India. Electronic address:

NOTCH, a single-pass transmembrane protein, plays a crucial role in cell fate determination through cell-to-cell communication. It interacts with two canonical ligands, Delta-like (DLL) and Jagged (JAG), located on neighboring cells to regulate diverse cellular processes. Despite extensive studies on the functional roles of NOTCH and its ligands in cellular growth, the structural details of full-length NOTCH and its ligands remain poorly understood.

View Article and Find Full Text PDF

Specialized chemosensory signals elicit innate social behaviors in individuals of several vertebrate species, a process that is mediated via the accessory olfactory system (AOS). The AOS comprising the peripheral sensory vomeronasal organ has evolved elaborate molecular and cellular mechanisms to detect chemo signals. To gain insight into the cell types, developmental gene expression patterns, and functional differences amongst neurons, we performed single-cell transcriptomics of the mouse vomeronasal sensory epithelium.

View Article and Find Full Text PDF

The glass-like slow dynamics in confluent epithelial monolayers is crucial for wound healing, embryogenesis, cancer progression, Experiments have indicated several unusual properties in these systems. Unlike ordinary glasses, the glassiness in cellular systems strongly correlates with their static properties and is sub-Arrhenius. These results imply that the slow dynamics in epithelial monolayers is either not glassy or the underlying mechanism is different from ordinary glasses.

View Article and Find Full Text PDF

Ultra-low magnetic field sensing is emerging as a tool for materials' diagnostics, particularly for the operando studies of electrochemical systems. A magnetic metrology system having the capability of sensing fields as low as ∼1.88 pT has been setup for such studies using a commercial atomic magnetometer.

View Article and Find Full Text PDF

Interplay of niche and respiratory network in shaping bacterial colonization.

J Biol Chem

December 2024

Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai, Maharashtra 400005, India. Electronic address:

The human body is an intricate ensemble of prokaryotic and eukaryotic cells, and this coexistence relies on the interplay of many biotic and abiotic factors. The inhabiting microbial population has to maintain its physiological homeostasis under highly dynamic and often hostile host environments. While bacterial colonization primarily relies on the metabolic suitability for the niche, there are reports of active remodeling of niche microenvironments to create favorable habitats, especially in the context of pathogenic settlement.

View Article and Find Full Text PDF

Engineering skyrmion from spin spiral in transition metal multilayers.

J Phys Condens Matter

December 2024

Department of Physics and Nanotechnology, SRM Institute of Science and Technology, Kattankulathur, 603203 Chennai, Tamil Nadu, India.

Skyrmions having topologically protected field configurations with particle-like properties play an important role in various fields of science. Our present study focus on the generation of skyrmion from spin spiral in the magnetic multilayers of 4d/Fe/Ir(111) with 4d = Y, Zr, Nb, Mo, Ru, Rh. Here we investigate the impact of 4d transition metals on the isotropic Heisenberg exchanges and anti-symmetric Dzyaloshinskii-Moriya interactions originating from the broken inversion symmetry at the interface of 4d/Fe/Ir(111) multilayers.

View Article and Find Full Text PDF

Tetra-benzimidazole rotors flanking a divinyl-phenothiazine stator are realized as red AIEgens and newly identified as efficient aza-Michael acceptors for the identification of biogenic amine vapors. Weakly red-emissive solids display a blue-shifted turn-on emission by rapid aza-Michael addition and simultaneous reverse Knoevenagel reactions. Concentration variation imposes better crystallinity and facilitates radiative decay, offering distinct emissions.

View Article and Find Full Text PDF

Plant-microbe interactions in tropical and subtropical ecosystems.

Am J Bot

December 2024

Society for the Protection of Underground Networks (SPUN), Dover, DE, USA.

Microbes regulate many dimensions of plant performance with multiscale implications for plant fitness, competition, coexistence, and ecosystem functioning. Yet, this fascinating and diverse arena of study has been limited to a few thematic areas, ecosystems, and regions. In particular, despite growing evidence that microbes may be critical players in the dynamics of plant communities in tropical and subtropical ecosystems, these regions remain poorly represented in studies of plant-microbe interactions.

View Article and Find Full Text PDF

Graphene oxide has been extensively employed as an additive in several nanocomposites to enhance their mechanical stability even though its Young's modulus is significantly smaller than that of pristine graphene. In the past decade, various chemical functionalizations have been attempted to enhance the mechanical strength of graphene oxide. In this work, we analyze the atomic contributions to the Young's modulus (YM) of graphene oxide with relevant models to decouple the role of the defects and the oxygen functionalities.

View Article and Find Full Text PDF

The cytoplasm of bacterial cells is densely packed with highly polydisperse macromolecules that exhibit size-dependent glassy dynamics. Recent research has revealed that metabolic activities in living cells can counteract the glassy nature of these macromolecules, allowing the cell to maintain critical fluidity for its growth and function. While it has been proposed that the crowded cytoplasm is responsible for this glassy behavior, a detailed analysis of the size-dependent nature of the glassy dynamics and an explanation for how cellular activity induces its fluidization remains elusive.

View Article and Find Full Text PDF

Indium-catalyzed hydrosilylation of nitroarenes to aromatic amines.

Dalton Trans

December 2024

Department of Chemistry, Indian Institute of Technology, Hyderabad, Kandi, Sangareddy 502284, Telangana, India.

Article Synopsis
  • - The study discusses the creation of three indium complexes (1-3) using different chelating ligands (L1-L3), which were analyzed through multinuclear NMR and confirmed by single-crystal X-ray crystallography.
  • - Indium complex 1, when combined with phenylsilane and NaI, efficiently reduces nitroarenes into amines, achieving good yields.
  • - The reduction process is effective for nitroarenes with various functional groups under standard reaction conditions.
View Article and Find Full Text PDF

A search is reported for charge-parity violation in decays, using data collected in proton-proton collisions at recorded by the CMS experiment in 2018. The analysis uses a dedicated data set that corresponds to an integrated luminosity of 41.6 , which consists of about 10 billion events containing a pair of b hadrons, nearly all of which decay to charm hadrons.

View Article and Find Full Text PDF