31 results match your criteria: "Target Discovery Institute (TDI)[Affiliation]"
J Am Heart Assoc
August 2021
Oxford Cardiovascular Clinical Research Facility, Radcliffe Department of Medicine, Division of Cardiovascular Medicine University of Oxford Oxford UK.
Background A subpopulation of endothelial progenitor cells called endothelial colony-forming cells (ECFCs) may offer a platform for cellular assessment in clinical studies because of their remarkable angiogenic and expansion potentials in vitro. Despite endothelial cell function being influenced by cardiovascular risk factors, no studies have yet provided a comprehensive proteomic profile to distinguish functional (ie, more angiogenic and expansive cells) versus dysfunctional circulating ECFCs of young adults. The aim of this study was to provide a detailed proteomic comparison between functional and dysfunctional ECFCs.
View Article and Find Full Text PDFBiochem J
July 2021
Institute of Pharmaceutical Chemistry, Goethe-University Frankfurt, 60438 Frankfurt, Germany.
Proc Natl Acad Sci U S A
December 2019
Edward Grey Institute, Department of Zoology, University of Oxford, OX1 3PS Oxford, United Kingdom.
Seminal fluid proteins (SFPs) exert potent effects on male and female fitness. Rapidly evolving and molecularly diverse, they derive from multiple male secretory cells and tissues. In , most SFPs are produced in the accessory glands, which are composed of ∼1,000 fertility-enhancing "main cells" and ∼40 more functionally cryptic "secondary cells.
View Article and Find Full Text PDFEur J Med Chem
September 2019
Cancer Research UK Cancer Therapeutics Unit, The Institute of Cancer Research, London, UK. Electronic address:
Residues in the histone substrate binding sites that differ between the KDM4 and KDM5 subfamilies were identified. Subsequently, a C8-substituted pyrido[3,4-d]pyrimidin-4(3H)-one series was designed to rationally exploit these residue differences between the histone substrate binding sites in order to improve affinity for the KDM4-subfamily over KDM5-subfamily enzymes. In particular, residues E169 and V313 (KDM4A numbering) were targeted.
View Article and Find Full Text PDFJ Med Chem
June 2019
Medicinal Chemistry, Rega Institute for Medical Research, KU Leuven , Herestraat 49-bus 1041 , 3000 Leuven , Belgium.
There are currently no approved drugs for the treatment of emerging viral infections, such as dengue and Ebola. Adaptor-associated kinase 1 (AAK1) is a cellular serine-threonine protein kinase that functions as a key regulator of the clathrin-associated host adaptor proteins and regulates the intracellular trafficking of multiple unrelated RNA viruses. Moreover, AAK1 is overexpressed specifically in dengue virus-infected but not bystander cells.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
January 2019
Structural Genomic Consortium (SGC), University of Oxford, Oxford, OX3 7DQ, UK.
Bromodomain-containing proteins are epigenetic modulators involved in a wide range of cellular processes, from recruitment of transcription factors to pathological disruption of gene regulation and cancer development. Since the druggability of these acetyl-lysine reader domains was established, efforts were made to develop potent and selective inhibitors across the entire family. Here we report the development of a small molecule-based approach to covalently modify recombinant and endogenous bromodomain-containing proteins by targeting a conserved lysine and a tyrosine residue in the variable ZA or BC loops.
View Article and Find Full Text PDFJ Cell Sci
January 2019
Ludwig Institute for Cancer Research, University of Oxford, ORCRB, Headington, Oxford, OX3 7DQ, UK
The eukaryotic endoplasmic reticulum (ER) membrane contains essential complexes that oversee protein biogenesis and lipid metabolism, impacting nearly all aspects of cell physiology. The ER membrane protein complex (EMC) is a newly described transmembrane domain (TMD) insertase linked with various phenotypes, but whose clients and cellular responsibilities remain incompletely understood. We report that EMC deficiency limits the cellular boundaries defining cholesterol tolerance, reflected by diminished viability with limiting or excessive extracellular cholesterol.
View Article and Find Full Text PDFSLAS Discov
February 2019
1 Structural Genomics Consortium, Nuffield Department of Clinical Medicine, University of Oxford, Target Discovery Institute (TDI), Oxford, UK.
Eleven-nineteen leukemia (ENL) contains an epigenetic reader domain (YEATS domain) that recognizes lysine acylation on histone 3 and facilitates transcription initiation and elongation through its interactions with the super elongation complex (SEC) and the histone methyl transferase DOT1L. Although it has been known for its role as a fusion protein in mixed lineage leukemia (MLL), overexpression of native ENL, and thus dysregulation of downstream genes in acute myeloid leukemia (AML), has recently been implicated as a driver of disease that is reliant on the epigenetic reader activity of the YEATS domain. We developed a peptide displacement assay (histone 3 tail with acylated lysine) and screened a small-molecule library totaling more than 24,000 compounds for their propensity to disrupt the YEATS domain-histone peptide binding.
View Article and Find Full Text PDFChem Sci
November 2017
Chemistry Research Laboratory , Department of Chemistry , University of Oxford, Oxford OX1 3TA , UK . Email:
Essays Biochem
November 2017
Structural Genomics Consortium (SGC), Nuffield Department of Medicine, University of Oxford, Roosevelt Drive, Oxford OX3 7DQ, U.K.
The ongoing explosion in genomics data has long since outpaced the capacity of conventional biochemical methodology to verify the large number of hypotheses that emerge from the analysis of such data. In contrast, it is still a gold-standard for early phenotypic validation towards small-molecule drug discovery to use probe molecules (or tool compounds), notwithstanding the difficulty and cost of generating them. Rational structure-based approaches to ligand discovery have long promised the efficiencies needed to close this divergence; in practice, however, this promise remains largely unfulfilled, for a host of well-rehearsed reasons and despite the huge technical advances spearheaded by the structural genomics initiatives of the noughties.
View Article and Find Full Text PDFACS Chem Biol
November 2017
Structural Genomics Consortium (SGC), Nuffield Department of Clinical Medicine, University of Oxford, Oxford, OX3 7DQ, United Kingdom.
Macrodomains are conserved protein interaction modules that can be found in all domains of life including in certain viruses. Macrodomains mediate recognition of sequence motifs harboring adenosine diphosphate ribose (ADPR) modifications, thereby regulating a variety of cellular processes. Due to their role in cancer or viral pathogenesis, macrodomains have emerged as potential therapeutic targets, but the unavailability of small molecule inhibitors has hampered target validation studies so far.
View Article and Find Full Text PDFPLoS One
September 2017
Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, United Kingdom.
Tears of the human supraspinatus tendon are common and often cause painful and debilitating loss of function. Progressive failure of the tendon leading to structural abnormality and tearing is accompanied by numerous cellular and extra-cellular matrix (ECM) changes in the tendon tissue. This proteomics study aimed to compare torn and aged rotator cuff tissue to young and healthy tissue, and provide the first ECM inventory of human supraspinatus tendon generated using label-free quantitative LC-MS/MS.
View Article and Find Full Text PDFJ Med Chem
November 2016
Normandie Univ, UNIROUEN, INSA Rouen, CNRS , COBRA UMR 6014, 76000 Rouen, France.
Methyl 9-anilinothiazolo[5,4-f]quinazoline-2-carbimidates 1 (EHT 5372) and 2 (EHT 1610) are strong inhibitors of DYRK's family kinases. The crystal structures of the complex revealed a noncanonical binding mode of compounds 1 and 2 in DYRK2, explaining the remarkable selectivity and potency of these inhibitors. The structural data and comparison presented here provide therefore a template for further improvement of this inhibitor class and for the development of novel inhibitors selectively targeting DYRK kinases.
View Article and Find Full Text PDFJ Med Chem
October 2016
Department für Pharmazie-Zentrum für Pharmaforschung, Ludwig-Maximilians-Universität München, Butenandtstrasse 5-13, D-81377 München, Germany.
CBP (CREB (cAMP responsive element binding protein) binding protein (CREBBP)) and P300 (adenovirus E1A-associated 300 kDa protein) are two closely related histone acetyltransferases (HATs) that play a key role in the regulation of gene transcription. Both proteins contain a bromodomain flanking the HAT catalytic domain that is important for the targeting of CBP/P300 to chromatin and which offeres an opportunity for the development of protein-protein interaction inhibitors. Here we present the development of CBP/P300 bromodomain inhibitors with 2,3,4,5-tetrahydro-1,4-benzoxazepine backbone, an N-acetyl-lysine mimetic scaffold that led to the recent development of the chemical probe I-CBP112.
View Article and Find Full Text PDFJ Med Chem
October 2016
Department of Pharmacy, University of Athens, Panepistimiopolis Zografou, GR-15771 Athens, Greece.
Bromodomains (BRDs) are epigenetic interaction domains currently recognized as emerging drug targets for development of anticancer or anti-inflammatory agents. In this study, development of a selective ligand of the fifth BRD of polybromo protein-1 (PB1(5)) related to switch/sucrose nonfermenting (SWI/SNF) chromatin remodeling complexes is presented. A compound collection was evaluated by consensus virtual screening and a hit was identified.
View Article and Find Full Text PDFOncogene
January 2017
Molecular Oncology Laboratories, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK.
The availability of bromodomain and extra-terminal inhibitors (BETi) has enabled translational epigenetic studies in cancer. BET proteins regulate transcription by selectively recognizing acetylated lysine residues on chromatin. BETi compete with this process leading to both downregulation and upregulation of gene expression.
View Article and Find Full Text PDFACS Chem Biol
June 2016
Target Discovery Institute (TDI), Nuffield Department of Medicine, University of Oxford, Oxford, OX37FZ, United Kingdom.
The mixed lineage kinase ZAK is a key regulator of the MAPK pathway mediating cell survival and inflammatory response. ZAK is targeted by several clinically approved kinase inhibitors, and inhibition of ZAK has been reported to protect from doxorubicin-induced cardiomyopathy. On the other hand, unintended targeting of ZAK has been linked to severe adverse effects such as the development of cutaneous squamous cell carcinoma.
View Article and Find Full Text PDFChem Sci
March 2016
Structural Genomics Consortium (SGC) , University of Oxford, Oxford OX3 7DQ , UK.
Research into the chemical biology of bromodomains has been driven by the development of acetyl-lysine mimetics. The ligands are typically anchored by binding to a highly conserved asparagine residue. Atypical bromodomains, for which the asparagine is mutated, have thus far proven elusive targets, including PHIP(2) whose parent protein, PHIP, has been linked to disease progression in diabetes and cancers.
View Article and Find Full Text PDFNucleic Acids Res
May 2016
Institute of Pharmaceutical Sciences, University of Freiburg, Freiburg 79104, Germany BIOSS Centre of Biological Signalling Studies, University of Freiburg, 79106 Freiburg, Germany German Cancer Research Centre (DKFZ), Heidelberg, Germany
Epigenetic modifications of histone tails play an essential role in the regulation of eukaryotic transcription. Writer and eraser enzymes establish and maintain the epigenetic code by creating or removing posttranslational marks. Specific binding proteins, called readers, recognize the modifications and mediate epigenetic signalling.
View Article and Find Full Text PDFStructure
March 2016
Nuffield Department of Clinical Medicine, Structural Genomics Consortium and Target Discovery Institute (TDI), University of Oxford, Old Road Campus, Roosevelt Drive, Oxford OX3 7DQ, UK; Institute for Pharmaceutical Chemistry, Buchmann Institute for Life Sciences Campus Riedberg, Goethe-University Frankfurt, 60438 Frankfurt am Main, Germany. Electronic address:
The highly diverse Numb-associated kinase (NAK) family has been linked to broad cellular functions including receptor-mediated endocytosis, Notch pathway modulation, osteoblast differentiation, and dendrite morphogenesis. Consequently, NAK kinases play a key role in a diverse range of diseases from Parkinson's and prostate cancer to HIV. Due to the plasticity of this kinase family, NAK kinases are often inhibited by approved or investigational drugs and have been associated with side effects, but they are also potential drug targets.
View Article and Find Full Text PDFJ Med Chem
February 2016
Cancer Research UK Cancer Therapeutics Unit, The Institute of Cancer Research, 15 Cotswold Road, London SM2 5NG, U.K.
We report the discovery of N-substituted 4-(pyridin-2-yl)thiazole-2-amine derivatives and their subsequent optimization, guided by structure-based design, to give 8-(1H-pyrazol-3-yl)pyrido[3,4-d]pyrimidin-4(3H)-ones, a series of potent JmjC histone N-methyl lysine demethylase (KDM) inhibitors which bind to Fe(II) in the active site. Substitution from C4 of the pyrazole moiety allows access to the histone peptide substrate binding site; incorporation of a conformationally constrained 4-phenylpiperidine linker gives derivatives such as 54j and 54k which demonstrate equipotent activity versus the KDM4 (JMJD2) and KDM5 (JARID1) subfamily demethylases, selectivity over representative exemplars of the KDM2, KDM3, and KDM6 subfamilies, cellular permeability in the Caco-2 assay, and, for 54k, inhibition of H3K9Me3 and H3K4Me3 demethylation in a cell-based assay.
View Article and Find Full Text PDFJ Med Chem
February 2016
Structural Genomics Consortium, University of Oxford, Oxford OX3 7DQ, U.K.
Development of tool molecules that inhibit Jumonji demethylases allows for the investigation of cancer-associated transcription. While scaffolds such as 2,4-pyridinedicarboxylic acid (2,4-PDCA) are potent inhibitors, they exhibit limited selectivity. To discover new inhibitors for the KDM4 demethylases, enzymes overexpressed in several cancers, we docked a library of 600,000 fragments into the high-resolution structure of KDM4A.
View Article and Find Full Text PDFCancer Res
December 2015
Nuffield Department of Clinical Medicine, University of Oxford, Structural Genomics Consortium, Old Road Campus Research Building, Roosevelt Drive, Oxford OX3 7DQ, UK.
The histone acetyltransferases CBP/p300 are involved in recurrent leukemia-associated chromosomal translocations and are key regulators of cell growth. Therefore, efforts to generate inhibitors of CBP/p300 are of clinical value. We developed a specific and potent acetyl-lysine competitive protein-protein interaction inhibitor, I-CBP112, that targets the CBP/p300 bromodomains.
View Article and Find Full Text PDFJ Mol Cell Biol
August 2016
INSERM, U823; Université Grenoble Alpes; Institut Albert Bonniot Grenoble, F-38700 Grenoble, France
Although the conserved AAA ATPase and bromodomain factor, ATAD2, has been described as a transcriptional co-activator upregulated in many cancers, its function remains poorly understood. Here, using a combination of ChIP-seq, ChIP-proteomics, and RNA-seq experiments in embryonic stem cells where Atad2 is normally highly expressed, we found that Atad2 is an abundant nucleosome-bound protein present on active genes, associated with chromatin remodelling, DNA replication, and DNA repair factors. A structural analysis of its bromodomain and subsequent investigations demonstrate that histone acetylation guides ATAD2 to chromatin, resulting in an overall increase of chromatin accessibility and histone dynamics, which is required for the proper activity of the highly expressed gene fraction of the genome.
View Article and Find Full Text PDFJ Med Chem
April 2015
†Laboratory of Medicinal Chemistry, Rega Institute for Medical Research, KU Leuven, Minderbroedersstraat 10, 3000 Leuven, Belgium.
Cyclin G associated kinase (GAK) emerged as a promising drug target for the treatment of viral infections. However, no potent and selective GAK inhibitors have been reported in the literature to date. This paper describes the discovery of isothiazolo[5,4-b]pyridines as selective GAK inhibitors, with the most potent congeners displaying low nanomolar binding affinity for GAK.
View Article and Find Full Text PDF