63 results match your criteria: "TU Wien (Vienna University of Technology)[Affiliation]"

"Smart" devices, such as contemporary smartphones and PDAs (Personal Digital Assistance), play a significant role in our daily live, be it for navigation or location-based services (LBSs). In this paper, the use of Ultra-Wide Band (UWB) and Wireless Fidelity (Wi-Fi) based on RTT (Round-Trip Time) measurements is investigated for pedestrian user localization. For this purpose, several scenarios are designed either using real observation or simulated data.

View Article and Find Full Text PDF

Mechanical properties of additively manufactured lattice structures composed of zirconia and hydroxyapatite ceramics.

J Mech Behav Biomed Mater

October 2024

Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Vienna, Austria; Ludwig Boltzmann Institute for Cardiovascular Research, Vienna, Austria; Austrian Cluster for Tissue Regeneration, Vienna, Austria.

Ceramic lattices hold great potential for bone scaffolds to facilitate bone regeneration and integration of native tissue with medical implants. While there have been several studies on additive manufacturing of ceramics and their osseointegrative and osteoconductive properties, there is a lack of a comprehensive examination of their mechanical behavior. Therefore, the aim of this study was to assess the mechanical properties of different additively manufactured ceramic lattice structures under different loading conditions and their overall ability to mimic bone tissue properties.

View Article and Find Full Text PDF

The growing urban population and traffic congestion underline the importance of building pedestrian-friendly environments to encourage walking as a preferred mode of transportation. However, a major challenge remains, which is the absence of such pedestrian-friendly walking environments. Identifying locations and routes with high pedestrian concentration is critical for improving pedestrian-friendly walking environments.

View Article and Find Full Text PDF

Organisms generate shapes across size scales. Whereas patterning and morphogenesis of macroscopic tissues has been extensively studied, the principles underlying the formation of micrometric and submicrometric structures remain largely enigmatic. Individual cells of polychaete annelids, so-called chaetoblasts, are associated with the generation of chitinous bristles of highly stereotypic geometry.

View Article and Find Full Text PDF

Mycoparasitism is a key feature of Trichoderma (Hypocreales, Ascomycota) biocontrol agents. Recent studies of intracellular signal transduction pathways of the potent mycoparasite Trichoderma atroviride revealed the involvement of Tmk1, a mitogen-activated protein kinase (MAPK), in triggering the mycoparasitic response. We previously showed that mutants missing Tmk1 exhibit reduced mycoparasitic activity against several plant pathogenic fungi.

View Article and Find Full Text PDF

App-based self-trainings targeting strain recovery and their effect on concentration.

Sci Rep

November 2023

Institute for Management Science, TU Wien (Vienna University of Technology), Labor Science and Organization, Theresianumgasse 27, 1040, Vienna, Austria.

During the COVID-19 pandemic, many knowledge workers reported concentration problems. This can be seen as critical as concentration is an important indicator for both cognitive wellbeing and occupational success. Drawing on the load theory of selective attention, we argue that concentration problems can be caused by the strain workers experienced during the pandemic.

View Article and Find Full Text PDF

The compressive strength evolution of 37 centigrade-cured Biodentine, a cement-based dental material, is quantified experimentally by crushing cylindrical specimens with length-to-diameter ratios amounting to 1.84 and 1.34, respectively, at nine different material ages ranging from 1 h to 28 days.

View Article and Find Full Text PDF

Global navigation satellite systems (GNSSs) and ultra-wideband (UWB) ranging are two central research topics in the field of positioning and navigation. In this study, a GNSS/UWB fusion method is investigated in GNSS-challenged environments or for the transition between outdoor and indoor environments. UWB augments the GNSS positioning solution in these environments.

View Article and Find Full Text PDF

The rapid growth in the technological advancements of the smartphone industry has classified contemporary smartphones as a low-cost and high quality indoor positioning tools requiring no additional infrastructure or equipment. In recent years, the fine time measurement (FTM) protocol, achieved through the Wi-Fi round trip time (RTT) observable, available in the most recent models, has gained the interest of many research teams worldwide, especially those concerned with indoor localization problems. However, as the Wi-Fi RTT technology is still new, there is a limited number of studies addressing its potential and limitations relative to the positioning problem.

View Article and Find Full Text PDF

Cross-School Collaboration to Develop and Implement Self-Construction Greening Systems for Schools.

Plants (Basel)

January 2023

Research Unit of Ecological Building Technologies, Institute of Material Technology, Building Physics and Building Ecology, Faculty of Civil and Environmental Engineering, TU Wien-Vienna University of Technology, 1040 Vienna, Austria.

The positive effects of green infrastructure in the urban environment are nowadays widely known and proven by research. Yet, greening, which serves to improve the indoor climate and people's well-being, is integrated very limited in public facilities such as schools. Reasons for this are seen in a lack of knowledge and financing opportunities.

View Article and Find Full Text PDF

Computational modeling of multiple myeloma interactions with resident bone marrow cells.

Comput Biol Med

February 2023

School of Engineering and Architecture (EINA), University of Zaragoza, Zaragoza, 50018, Spain; Aragon Institute of Engineering Research (I3A), University of Zaragoza, Zaragoza, 50018, Spain; Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Zaragoza, 50018, Spain. Electronic address:

The interaction of multiple myeloma with bone marrow resident cells plays a key role in tumor progression and the development of drug resistance. The tumor cell response involves contact-mediated and paracrine interactions. The heterogeneity of myeloma cells and bone marrow cells makes it difficult to reproduce this environment in in-vitro experiments.

View Article and Find Full Text PDF

MALDI mass spectrometry imaging (MALDI MSI) is a powerful analytical method for achieving 2D localization of compounds from thin sections of typically but not exclusively biological samples. The dynamically harmonized ICR cell (ParaCell) was recently introduced to achieve extreme spectral resolution capable of providing the isotopic fine structure of ions detected in complex samples. The latest improvement in the ICR technology also includes 2ω detection, which significantly reduces the transient time while preserving the nominal mass resolving power of the ICR cell.

View Article and Find Full Text PDF

Rationale: The efficiency of lubricants strongly depends on the content of functional additives. In order to assess the chemical and structural changes taking place in the lubricating oil and its additives during operation, it is essential to develop a method for simple and prompt analysis.

Methods: Two single additives as well as a fully formulated engine oil were analysed using an atmospheric pressure matrix-assisted laser desorption/ionization (AP-MALDI) source coupled to a linear trap quadrupole Orbitrap XL hybrid tandem mass spectrometer and compared with results obtained by means of electrospray ionization (ESI) including additional low-energy collision-induced dissociation (LE-CID).

View Article and Find Full Text PDF

About prestretch in homogenized constrained mixture models simulating growth and remodeling in patient-specific aortic geometries.

Biomech Model Mechanobiol

April 2022

Mines Saint-Étienne, University of Lyon, University of Jean Monnet, INSERM, U 1059 Sainbiose, 42023, Saint-Étienne, France.

Evolution of mechanical and structural properties in the Ascending Thoracic Aorta (ATA) is the results of complex mechanobiological processes. In this work, we address some numerical challenges in order to elaborate computational models of these processes. For that, we extend the state of the art of homogenized constrained mixture (hCM) models.

View Article and Find Full Text PDF

Research Techniques Made Simple: Lipidomic Analysis in Skin Research.

J Invest Dermatol

January 2022

Department of Dermatology, Medical University of Vienna, Vienna, Austria; Christian Doppler Laboratory for Skin Multimodal Analytical Imaging of Aging and Senescence (SKINMAGINE), Medical University of Vienna, Vienna, Austria. Electronic address:

Although lipids are crucial molecules for cell structure, metabolism, and signaling in most organs, they have additional specific functions in the skin. Lipids are required for the maintenance and regulation of the epidermal barrier, physical properties of the skin, and defense against microbes. Analysis of the lipidome-the totality of lipids-is of similar complexity to those of proteomics or other omics, with lipid structures ranging from simple, linear, to highly complex structures.

View Article and Find Full Text PDF

Calcium ion effect on phospholipid bilayers as cell membrane analogues.

Bioelectrochemistry

February 2022

University of Ljubljana, Faculty of Electrical Engineering, Slovenia. Electronic address:

Ion attachment can modify stability and structure of phospholipid bilayers. Of particular importance is the interaction of phospholipids with divalent cations, such as calcium ions playing an important role in numerous cellular processes. The aim of our study was to determine effects of calcium ions on phospholipid membranes employing two cell membrane analogues, liposomes and planar lipid bilayers, and for the first time the combination of two instrumental setups: gas-phase electrophoresis (nES GEMMA instrumentation) and electrical (capacitance and resistance) measurements.

View Article and Find Full Text PDF

Fiber Rearrangement and Matrix Compression in Soft Tissues: Multiscale Hypoelasticity and Application to Tendon.

Front Bioeng Biotechnol

October 2021

Mines Saint-Etienne, Univ. Lyon, Univ. Jean Monnet, INSERM, U1059 Sainbiose, Centre CIS, Saint-Etienne, France.

It is widely accepted that the nonlinear macroscopic mechanical behavior of soft tissue is governed by fiber straightening and re-orientation. Here, we provide a quantitative assessment of this phenomenon, by means of a continuum micromechanics approach. Given the negligibly small bending stiffness of crimped fibers, the latter are represented through a number of hypoelastic straight fiber phases with different orientations, being embedded into a hypoelastic matrix phase.

View Article and Find Full Text PDF

Micromechanics of dental cement paste.

J Mech Behav Biomed Mater

December 2021

Institute for Mechanics of Materials and Structures, TU Wien (Vienna University of Technology), Karlsplatz 13/202, 1040 Vienna, Austria. Electronic address:

Biodentine is a calcium silicate/calcium carbonate/zirconium dioxide/water-based dental replacement biomaterial, significantly outperforming the stiffness and hardness properties of chemically similar construction cement pastes. We here report the first systematic micromechanical investigation of Biodentine, combining grid nanoindentation with ultrasonic testing and micromechanical modeling. Histograms of nanoindentation-probed hardness and elastic modulus, comprising more than 5700 values each, are very well represented by the superposition of three log-normal distributions (LNDs).

View Article and Find Full Text PDF

Virus-like particles (VLPs) are proteinaceous shells derived from viruses lacking any viral genomic material. Adeno-associated virus (AAV) is a non-enveloped icosahedral virus used as VLP delivery system in gene therapy (GT). Its success as vehicle for GT is due to its selective tropism, high level of transduction, and low immunogenicity.

View Article and Find Full Text PDF

Due to the fast growing importance of monoclonal antibodies in biomedical research, bioanalytics and human therapy, sensitive, fast and reliable methods are needed to monitor their production, target their characteristics, and for their final quality control. Application of a nano electrospray (nES) with soft X-ray radiation (SXR) based charge reduction and differential mobility analysis (DMA, aka nano electrospray gas-phase electrophoretic mobility molecular analysis, nES GEMMA) allows the size-separation and detection of macromolecules and (bio-)nanoparticles from a few nm up to several hundreds of nm in diameter in a native-like environment. The current study focuses on the analysis of a 148 kDa recombinant monoclonal antibody (rmAb) with the above mentioned instrumental setup and applying an universal detector, i.

View Article and Find Full Text PDF

When striving for reconstructing and predicting bone remodeling processes by means of mathematical models, cell population models have become a popular option. From a conceptual point of view, these models are able to take into account an arbitrary amount of regulatory mechanisms driving the development of bone cells and their activities. However, in most cases, the models include a large number of parameters; and most of those parameters cannot be measured, which certainly compromises the credibility of cell population models.

View Article and Find Full Text PDF

Adeno-associated virus (AAV)-based virus-like particles (VLPs) are thriving vectors of choice in the biopharmaceutical field of gene therapy. Here, a method to investigate purified AAV serotype 8 (AAV8) batches via a nanoelectrospray gas-phase mobility molecular analyzer (nES GEMMA), also known as an nES differential mobility analyzer, is presented. Indeed, due to AAV's double-digit nanometer scale, nES GEMMA is an excellently suited technique to determine the surface-dry particle size termed electrophoretic mobility diameter of such VLPs in their native state at atmospheric pressure and with particle-number-based detection.

View Article and Find Full Text PDF

Determining the mode of action of microbial biocontrol agents plays a key role in their development and registration as commercial biopesticides. The biocontrol rhizobacterium AZ78 (AZ78) is able to inhibit a vast array of plant pathogenic oomycetes and Gram-positive bacteria due to the release of antimicrobial secondary metabolites. A combination of MALDI-qTOF-MSI and UHPLC-HRMS/M was applied to finely dissect the AZ78 metabolome and identify the main secondary metabolites involved in the inhibition of plant pathogenic microorganisms.

View Article and Find Full Text PDF

Gas-phase electrophoresis yields size distributions of polydisperse, aerosolized analytes based on electrophoretic principles. Nanometer-sized, surface-dry, single-charged particles are separated in a high laminar sheath flow of particle-free air and an orthogonal tunable electric field. Additionally, nano Electrospray Gas-Phase Electrophoretic Mobility Molecular Analyzer (nES GEMMA) data are particle-number based.

View Article and Find Full Text PDF