8 results match your criteria: "Systems Analytics Research Institute[Affiliation]"

Studies on the influence of a modern lifestyle in abetting Coronary Heart Diseases (CHD) have mostly focused on deterrent health factors, like smoking, alcohol intake, cheese consumption and average systolic blood pressure, largely disregarding the impact of a healthy lifestyle in mitigating CHD risk. In this study, 30+ years' World Health Organization (WHO) data have been analyzed, using a wide array of advanced Machine Learning techniques, to quantify how regulated reliance on positive health indicators, e.g.

View Article and Find Full Text PDF

Supramolecular chemistry offers an exciting opportunity to assemble materials with molecular precision. However, there remains an unmet need to turn molecular self-assembly into functional materials and devices. Harnessing the inherent properties of both disordered proteins and graphene oxide (GO), we report a disordered protein-GO co-assembling system that through a diffusion-reaction process and disorder-to-order transitions generates hierarchically organized materials that exhibit high stability and access to non-equilibrium on demand.

View Article and Find Full Text PDF

MS2 bacteriophage capsid studied using all-atom molecular dynamics.

Interface Focus

June 2019

Department of Mathematics, Systems Analytics Research Institute, Aston University, Birmingham B4 7ET, UK.

The all-atom model of an MS2 bacteriophage particle without its genome (the capsid) was built using high-resolution cryo-electron microscopy (EM) measurements for initial conformation. The structural characteristics of the capsid and the dynamics of the surrounding solution were examined using molecular dynamics simulation. The model demonstrates the overall preservation of the cryo-EM structure of the capsid at physiological conditions (room temperature and ions composition).

View Article and Find Full Text PDF

Supramolecular polymers, such as microtubules, operate under non-equilibrium conditions to drive crucial functions in cells, such as motility, division and organelle transport. In vivo and in vitro size oscillations of individual microtubules (dynamic instabilities) and collective oscillations have been observed. In addition, dynamic spatial structures, like waves and polygons, can form in non-stirred systems.

View Article and Find Full Text PDF

The Semantic Link Network is a general semantic model for modeling the structure and the evolution of complex systems. Various semantic links play different roles in rendering the semantics of complex system. One of the basic semantic links represents cause-effect relation, which plays an important role in representation and understanding.

View Article and Find Full Text PDF

Protein lipograms.

J Theor Biol

October 2017

School of Life and Health Sciences, Aston University, Birmingham B4 7ET, UK. Electronic address:

Linguistic analysis of protein sequences is an underexploited technique. Here, we capitalize on the concept of the lipogram to characterize sequences at the proteome levels. A lipogram is a literary composition which omits one or more letters.

View Article and Find Full Text PDF

Present experimental methods do not have sufficient resolution to investigate all processes in virus particles at atomistic details. We report the results of molecular dynamics simulations and analyze the connection between the number of ions inside an empty capsid of PCV2 virus and its stability. We compare the crystallographic structures of the capsids with unresolved N-termini and without them in realistic conditions (room temperature and aqueous solution) and show that the structure is preserved.

View Article and Find Full Text PDF

Noise-induced standing waves in oscillatory systems with time-delayed feedback.

Phys Rev E

May 2016

Non-linearity and Complexity Research Group, Systems Analytics Research Institute, School of Engineering and Applied Science, Aston University, Aston Triangle, Birmingham, B4 7ET, United Kingdom.

In oscillatory reaction-diffusion systems, time-delay feedback can lead to the instability of uniform oscillations with respect to formation of standing waves. Here, we investigate how the presence of additive, Gaussian white noise can induce the appearance of standing waves. Combining analytical solutions of the model with spatiotemporal simulations, we find that noise can promote standing waves in regimes where the deterministic uniform oscillatory modes are stabilized.

View Article and Find Full Text PDF