642 results match your criteria: "Swiss Institute for Experimental Cancer Research ISREC[Affiliation]"
Commun Med (Lond)
January 2025
Division of Pulmonary Medicine, Department of Medicine, Lausanne University Hospital (CHUV), University of Lausanne (UNIL), Lausanne, Switzerland.
Background: Bronchiolitis Obliterans Syndrome (BOS), a fibrotic airway disease that may develop after lung transplantation, conventionally relies on pulmonary function tests (PFTs) for diagnosis due to limitations of CT imaging. Deep neural networks (DNNs) have not previously been used for BOS detection. This study aims to train a DNN to detect BOS in CT scans using an approach tailored for low-data scenarios.
View Article and Find Full Text PDFNat Cardiovasc Res
January 2025
Department of Anatomy and Embryology, Leiden University Medical Center, Leiden, the Netherlands.
Dis Model Mech
January 2025
Laboratory Genes and Disease, Department of Laboratory Medicine, Medical University of Vienna (MUW), Vienna, Austria.
Genetically engineered mouse models (GEMMs) are instrumental for modelling local and systemic features of complex diseases such as cancer. Non-invasive, longitudinal cell detection and monitoring in tumors, metastases and/or the micro-environment is paramount to achieve a better spatiotemporal understanding of cancer progression and to evaluate therapies in preclinical studies. Bioluminescent and fluorescent reporters marking tumor cells or their microenvironment are valuable for non-invasive cell detection and monitoring in vivo.
View Article and Find Full Text PDFEMBO Rep
December 2024
Swiss Institute for Experimental Cancer Research (ISREC), School of Life Sciences, Swiss Federal Institute of Technology Lausanne (EPFL), Lausanne, Switzerland.
The early branching eukaryote Naegleria gruberi can transform transiently from an amoeboid life form lacking centrioles and flagella to a flagellate life form where these elements are present, followed by reversion to the amoeboid state. The mechanisms imparting elimination of axonemes and centrioles during this reversion process are not known. Here, we uncover that flagella primarily fold onto the cell surface and fuse within milliseconds with the plasma membrane.
View Article and Find Full Text PDFNat Rev Gastroenterol Hepatol
November 2024
Department of Pathology & Laboratory Medicine, University of Cincinnati, Cincinnati, OH, USA.
Lymphatic vessels are crucial for fluid absorption and the transport of peripheral immune cells to lymph nodes. However, in the small intestine, the lymphatic fluid is rich in diet-derived lipids incorporated into chylomicrons and gut-specific immune cells. Thus, intestinal lymphatic vessels have evolved to handle these unique cargoes and are critical for systemic dietary lipid delivery and metabolism.
View Article and Find Full Text PDFEMBO Mol Med
December 2024
Ecole Polytechnique Fédérale de Lausanne (EPFL), School of Life Sciences, Swiss Institute for Experimental Cancer Research (ISREC), Swiss Cancer Center Leman (SCCL), Station 19, CH-1015, Lausanne, Switzerland.
Cancer cell plasticity contributes significantly to the failure of chemo- and targeted therapies in triple-negative breast cancer (TNBC). Molecular mechanisms of therapy-induced tumor cell plasticity and associated resistance are largely unknown. Using a genome-wide CRISPR-Cas9 screen, we investigated escape mechanisms of NOTCH-driven TNBC treated with a gamma-secretase inhibitor (GSI) and identified SOX2 as a target of resistance to Notch inhibition.
View Article and Find Full Text PDFNat Rev Cancer
January 2025
Agora Cancer Research Center, Lausanne, Switzerland.
Tumorigenesis embodies the formation of a heterotypic tumour microenvironment (TME) that, among its many functions, enables the evasion of T cell-mediated immune responses. Remarkably, most TME cell types, including cancer cells, fibroblasts, myeloid cells, vascular endothelial cells and pericytes, can be stimulated to deploy immunoregulatory programmes. These programmes involve regulatory inducers (signals-in) and functional effectors (signals-out) that impair CD8 and CD4 T cell activity through cytokines, growth factors, immune checkpoints and metabolites.
View Article and Find Full Text PDFMol Oncol
January 2025
Swiss Institute for Experimental Cancer Research (ISREC), School of Life Sciences, EPFL, Lausanne, Switzerland.
The ability of cancer cells to change and adapt poses a critical challenge to identifying curative solutions. Tumor evolution has been extensively studied from a genetic perspective, to guide clinicians in selecting the most appropriate therapeutic option based on a patient's mutational profile. However, several studies reported that tumors can evolve toward more aggressive stages or become resistant to therapies without changing their genetic makeup.
View Article and Find Full Text PDFCell Commun Signal
October 2024
Institute of Physiological Chemistry, Faculty of Medicine, Philipps-University of Marburg, Karl-Von-Frisch-Straße 2, 35043, Marburg, Germany.
Background: The inability of biologics to pass the plasma membrane prevents their development as therapeutics for intracellular targets. To address the lack of methods for cytosolic protein delivery, we used the type III secretion system (T3SS) of Y. enterocolitica, which naturally injects bacterial proteins into eukaryotic host cells, to deliver monobody proteins into cancer cells.
View Article and Find Full Text PDFCurr Opin Cell Biol
December 2024
Swiss Institute for Experimental Cancer Research (ISREC), School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland. Electronic address:
TERRA long noncoding RNAs play key roles in telomere function and maintenance. They can orchestrate telomeric chromatin remodeling, regulate telomere maintenance by telomerase and homology-directed repair, and they participate in the telomeric DNA damage response. TERRA associates with chromosome ends through base-pairing forming R-loops, which are mediated by the RAD51 DNA recombinase and its partner RAD51AP1.
View Article and Find Full Text PDFCancer Cell
September 2024
Department of Oncology, University of Lausanne, 1011 Lausanne, Switzerland; Ludwig Institute for Cancer Research, University of Lausanne, 1011 Lausanne, Switzerland; Agora Cancer Research Center Lausanne, 1011 Lausanne, Switzerland; Agora Cancer Centre, University Hospital Lausanne, 1011 Lausanne, Switzerland; Lundin Brain Tumour Centre, University Hospital Lausanne, 1011 Lausanne, Switzerland; Swiss Cancer Center Leman (SCCL), Lausanne, Geneva, Switzerland. Electronic address:
NPJ Precis Oncol
August 2024
Laboratory of Stem Cell Bioengineering, Institute of Bioengineering, School of Life Sciences and School of Engineering, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland.
Immunotherapy has emerged as a new standard of care for certain cancer patients with specific cellular and molecular makeups. However, there is still an unmet need for ex vivo models able to readily assess the effectiveness of immunotherapeutic treatments in a high-throughput and patient-specific manner. To address this issue, we have developed a microarrayed system of patient-derived tumoroids with recreated immune microenvironments that are optimized for the high-content evaluation of tumor-infiltrating lymphocyte functionality.
View Article and Find Full Text PDFSignal Transduct Target Ther
July 2024
Department of Medicine, Thoracic Oncology Service, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
Mol Syst Biol
September 2024
Biotech Research & Innovation Centre (BRIC), University of Copenhagen, Copenhagen, Denmark.
Curr Opin Struct Biol
October 2024
Swiss Institute for Experimental Cancer Research (ISREC), EPFL, Lausanne 1015, Switzerland; Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, Basel 4058, Switzerland. Electronic address:
Pioneering transcription factors (TFs) can drive cell fate changes by binding their DNA motifs in a repressive chromatin environment. Recent structures illustrate emerging rules for nucleosome engagement: TFs distort the nucleosomal DNA to gain access or employ alternative DNA-binding modes with smaller footprints, they preferentially access solvent-exposed motifs near the entry/exit sites, and frequently interact with histones. The extent of TF-histone interactions, in turn, depends on the motif location on the nucleosome, the type of DNA-binding fold, and adjacent domains present.
View Article and Find Full Text PDFNat Cancer
June 2024
Swiss Institute for Experimental Cancer Research (ISREC), School of Life Sciences, Swiss Federal Institute of Technology in Lausanne (EPFL), Lausanne, Switzerland.
Research into the mechanisms and manifestations of solid tumor vascularization was launched more than 50 years ago with the proposition and experimental demonstrations that angiogenesis is instrumental for tumor growth and was, therefore, a promising therapeutic target. The biological knowledge and therapeutic insights forthcoming have been remarkable, punctuated by new concepts, many of which were not foreseen in the early decades. This article presents a perspective on tumor vascularization and its therapeutic targeting but does not portray a historical timeline.
View Article and Find Full Text PDFNat Chem Biol
September 2024
Swiss Institute for Experimental Cancer Research (ISREC), School of Life Sciences, Swiss Federal Institute of Technology Lausanne (EPFL), Lausanne, Switzerland.
Cysteine cathepsins are a family of proteases that are relevant therapeutic targets for the treatment of different cancers and other diseases. However, no clinically approved drugs for these proteins exist, as their systemic inhibition can induce deleterious side effects. To address this problem, we developed a modular antibody-based platform for targeted drug delivery by conjugating non-natural peptide inhibitors (NNPIs) to antibodies.
View Article and Find Full Text PDFNature
May 2024
Laboratory of Stem Cell Bioengineering, Institute of Bioengineering, School of Life Sciences and School of Engineering, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland.
Three-dimensional organoid culture technologies have revolutionized cancer research by allowing for more realistic and scalable reproductions of both tumour and microenvironmental structures. This has enabled better modelling of low-complexity cancer cell behaviours that occur over relatively short periods of time. However, available organoid systems do not capture the intricate evolutionary process of cancer development in terms of tissue architecture, cell diversity, homeostasis and lifespan.
View Article and Find Full Text PDFbioRxiv
April 2024
Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA.
Targeting cell surface molecules using radioligand and antibody-based therapies has yielded considerable success across cancers. However, it remains unclear how the expression of putative lineage markers, particularly cell surface molecules, varies in the process of lineage plasticity, wherein tumor cells alter their identity and acquire new oncogenic properties. A notable example of lineage plasticity is the transformation of prostate adenocarcinoma (PRAD) to neuroendocrine prostate cancer (NEPC)--a growing resistance mechanism that results in the loss of responsiveness to androgen blockade and portends dismal patient survival.
View Article and Find Full Text PDFCell
March 2024
Lausanne Branch, Ludwig Institute for Cancer Research, Lausanne, Switzerland; Swiss institute for Experimental Cancer Research (ISREC), EPFL, Lausanne, Switzerland; Agora Translational Cancer Research Center, Lausanne, Switzerland. Electronic address:
The last 50 years have witnessed extraordinary developments in understanding mechanisms of carcinogenesis, synthesized as the hallmarks of cancer. Despite this logical framework, our understanding of the molecular basis of systemic manifestations and the underlying causes of cancer-related death remains incomplete. Looking forward, elucidating how tumors interact with distant organs and how multifaceted environmental and physiological parameters impinge on tumors and their hosts will be crucial for advances in preventing and more effectively treating human cancers.
View Article and Find Full Text PDFTargeted protein degradation (TPD) mediates protein level through small molecule induced redirection of E3 ligases to ubiquitinate neo-substrates and mark them for proteasomal degradation. TPD has recently emerged as a key modality in drug discovery. So far only a few ligases have been utilized for TPD.
View Article and Find Full Text PDFCancer Discov
January 2024
Research Institute of Molecular Pathology, Vienna Biocenter, Vienna, Austria.
Unlabelled: Cancer cells adapt and survive through the acquisition and selection of molecular modifications. This process defines cancer evolution. Building on a theoretical framework based on heritable genetic changes has provided insights into the mechanisms supporting cancer evolution.
View Article and Find Full Text PDFMol Oncol
May 2024
National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bengaluru, India.
Nat Cancer
February 2024
Swiss Institute for Experimental Cancer Research (ISREC), School of Life Sciences, Swiss Federal Institute of Technology in Lausanne (EPFL), Lausanne, Switzerland.
Dendritic cells (DCs) are antigen-presenting myeloid cells that regulate T cell activation, trafficking and function. Monocyte-derived DCs pulsed with tumor antigens have been tested extensively for therapeutic vaccination in cancer, with mixed clinical results. Here, we present a cell-therapy platform based on mouse or human DC progenitors (DCPs) engineered to produce two immunostimulatory cytokines, IL-12 and FLT3L.
View Article and Find Full Text PDF