56 results match your criteria: "Swedish Geotechnical Institute[Affiliation]"

Healthy soils provide valuable ecosystem services (ES), but soil contamination can inhibit essential soil functions (SF) and pose risks to human health and the environment. A key advantage of using gentle remediation options (GRO) is the potential for multifunctionality: to both manage risks and improve soil functionality. In this study, an accessible, scientific method for soil health assessment directed towards practitioners and decision-makers in contaminated land management was developed and demonstrated for a field experiment at a DDX-contaminated tree nursery site in Sweden to evaluate the relative effects of GRO on soil health (i.

View Article and Find Full Text PDF

Phytoextraction, utilizing plants to remove soil contaminants, is a promising approach for environmental remediation but its application is often limited due to the long time requirements. This study aims to develop simplified and user-friendly probabilistic models to estimate the time required for phytoextraction of contaminants while considering uncertainties. More specifically we: i) developed probabilistic models for time estimation, ii) applied these models using site-specific data from a field experiment testing pumpkin (Cucurbita pepo ssp.

View Article and Find Full Text PDF

Soil contaminants may restrict soil functions. A promising soil remediation method is amendment with biochar, which has the potential to both adsorb contaminants and improve soil health. However, effects of biochar amendment on soil-plant nitrogen (N) dynamics and N cycling microbial guilds in contaminated soils are still poorly understood.

View Article and Find Full Text PDF

Arsenic (As) is carcinogenic and of major concern in groundwater. We collected sediment material from a contaminated anoxic aquifer in Sweden and investigated the immobilization of As by four commercial zero-valent iron (ZVI) particles. Solid-phase As and Fe speciation was assessed using X-ray absorption spectroscopy (XAS) and solution-phase As speciation using chromatographic separation.

View Article and Find Full Text PDF

Large-scale arsenic mobilization from legacy sources in anoxic aquifers: Multiple methods and multi-decadal perspectives.

Sci Total Environ

September 2023

Department of Physical Geography, Bolin Center for Climate Research, Stockholm University, SE-106 91 Stockholm, Sweden.

While geogenic arsenic (As) contamination of aquifers have been intensively investigated across the world, the mobilization and transport of As from anthropogenic sources have received less scientific attention, despite emerging evidence of poor performance of widely used risk assessment models. In this study we hypothesize that such poor model performance is largely due to insufficient attention to heterogeneous subsurface properties, including the hydraulic conductivity K and the solid-liquid partition (K), as well as neglect of laboratory-to-field scaling effects. Our multi-method investigation includes i) inverse transport modelling, ii) in-situ measurements of As concentrations in paired samples of soil and groundwater, and iii) batch equilibrium experiments combined with (iv) geochemical modelling.

View Article and Find Full Text PDF

The pH-dependent soil-water partitioning of six perfluoroalkyl substances (PFASs) of environmental concern (PFOA, PFDA, PFUnDA, PFHxS, PFOS and FOSA), was investigated for 11 temperate mineral soils and related to soil properties such as organic carbon content (0.2-3%), concentrations of Fe and Al (hydr)oxides, and texture. PFAS sorption was positively related to the perfluorocarbon chain length of the molecule, and inversely related to solution pH for all substances.

View Article and Find Full Text PDF

Antibiotics are critical components of modern health care. Protecting their efficacy through managing the rise in antibiotic resistance is therefore a global concern. It is not known to what extent environmental pollution from antibiotics contributes to the development of resistance, but encountered concentrations are frequently above concentrations predicted to select for resistance.

View Article and Find Full Text PDF

In 2009, a low-volume gravel road in Sweden was stabilised using fly ash from a local paper mill. The objective was to examine whether fly ash could be used to enhance the stability of the road and how the nearby environment would be affected. The technical and environmental properties of the road have been monitored for two, six, and eleven years.

View Article and Find Full Text PDF

The charge- and concentration-dependent sorption behavior of a range of per- and polyfluoroalkyl substances (PFASs) was studied for three organic soil samples with different organic matter quality, one Spodosol Oe horizon (Mor Oe) and two Sphagnum peats with different degrees of decomposition (Peat Oi and Peat Oe). Sorption to the two peat materials was, on average, four times stronger compared to that onto the Mor Oe material. In particular, longer-chained PFASs were more strongly bound by the two peats as compared to the Mor Oe sample.

View Article and Find Full Text PDF

Extraction of soil samples with dilute CaCl solution in a routinely performed batch test has potential to be used in site-specific assessment of ecotoxicological risks at metal-contaminated sites. Soil extracts could potentially give a measure of the concentration of bioavailable metals in the soil solution, thereby including effects of soil properties and contaminant "aging." We explored the possibility of using a 0.

View Article and Find Full Text PDF

Per- and polyfluoroalkyl substances (PFAS) are known to be persistent, bioaccumulative, and have adverse health effects, but very little is known about PFAS in the terrestrial environment and factors influencing their distribution. This paper presents one of the first comprehensive studies investigating PFAS (n = 28) in background forest soils (n = 27) on national scale across Sweden. The results showed that 16 of 28 target PFAS were present and all sites contained at least three PFAS compounds, with total concentrations ranging between 0.

View Article and Find Full Text PDF

The Baltic Sea is among the most polluted seas worldwide. Anthropogenic contaminants are mainly introduced via riverine discharge and atmospheric deposition. Regional and international measures have successfully been employed to reduce concentrations of several legacy contaminants.

View Article and Find Full Text PDF

Chlorination of soil organic matter: The role of humus type and land use.

Sci Total Environ

February 2022

Department of Thematic Studies - Environmental Change, Linköping University, 581 83 Linköping, Sweden.

The levels of natural organic chlorine (Cl) typically exceed levels of chloride in most soils and is therefore clearly of high importance for continental chlorine cycling. The high spatial variability raises questions on soil organic matter (SOM) chlorination rates among topsoils with different types of organic matter. We measured Cl formation rates along depth profiles in six French temperate soils with similar Cl deposition using Cl tracer experiments.

View Article and Find Full Text PDF

Soil samples from a contaminated site in Sweden were analyzed to identify the presence of 78 polycyclic aromatic compounds (PACs) using gas chromatography coupled with mass spectrometry (GC-MS). The target analysis revealed large contributions not only from polycyclic aromatic hydrocarbons (PAHs), but also from alkylated- and oxygenated-PAHs (alkyl- and oxy-PAHs, respectively), and N-heterocyclics (NPACs). PAC profiles indicated primarily pyrogenic sources, although contribution of petrogenic sources was also observed in one sample as indicated by a high ratio of alkylated naphthalene compared to naphthalene.

View Article and Find Full Text PDF

Biochar produced from wood waste for soil remediation in Sweden: Carbon sequestration and other environmental impacts.

Sci Total Environ

July 2021

Department of Sustainable Development, Environmental Science and Engineering (SEED), KTH Royal Institute of Technology, Teknikringen 10B, SE-100 44 Stockholm, Sweden; Department of Energy and Technology, Swedish University of Agricultural Sciences (SLU), Uppsala, Sweden.

The use of biochar to stabilize soil contaminants is emerging as a technique for remediation of contaminated soils. In this study, an environmental assessment of systems where biochar produced from wood waste with energy recovery is used for remediation of soils contaminated with polycyclic aromatic hydrocarbons (PAH) and metal(loid)s was performed. Two soil remediation options with biochar (on- and off-site) are considered and compared to landfilling.

View Article and Find Full Text PDF

High-latitude regions play a key role in the carbon (C) cycle and climate system. An important question is the degree of mobilization and atmospheric release of vast soil C stocks, partly stored in permafrost, with amplified warming of these regions. A fraction of this C is exported to inland waters and emitted to the atmosphere, yet these losses are poorly constrained and seldom accounted for in assessments of high-latitude C balances.

View Article and Find Full Text PDF

Chlorine cycling and the fate of Cl in terrestrial environments.

Environ Sci Pollut Res Int

February 2021

Department of Thematic Studies - Environmental Change, Linköping University, SE-581 83, Linkoping, Sweden.

Chlorine (Cl) in the terrestrial environment is of interest from multiple perspectives, including the use of chloride as a tracer for water flow and contaminant transport, organochlorine pollutants, Cl cycling, radioactive waste (radioecology; Cl is of large concern) and plant science (Cl as essential element for living plants). During the past decades, there has been a rapid development towards improved understanding of the terrestrial Cl cycle. There is a ubiquitous and extensive natural chlorination of organic matter in terrestrial ecosystems where naturally formed chlorinated organic compounds (Cl) in soil frequently exceed the abundance of chloride.

View Article and Find Full Text PDF

An improved quantitative and qualitative understanding of the interaction of per- and polyfluoroalkyl substances (PFASs) and short-range ordered Fe (hydr)oxides is crucial for environmental risk assessment in environments low in natural organic matter. Here, we present data on the pH-dependent sorption behavior of 12 PFASs onto ferrihydrite. The nature of the binding mechanisms was investigated by sulfur K-edge X-ray absorption near-edge structure (XANES) spectroscopy and by phosphate competition experiments.

View Article and Find Full Text PDF

Speciation of Cu and Zn in bottom ash from solid waste incineration studied by XAS, XRD, and geochemical modelling.

Waste Manag

January 2021

Recovery and Management, Renova AB, Box 156, SE-401 22 Gothenburg, Sweden; Department of Architecture and Civil Engineering, Division of Water Environment Technology, Chalmers University of Technology, SE-412 96 Gothenburg, Sweden. Electronic address:

Millions of tons of bottom ash (BA) is generated from incineration of industrial and municipal solid waste each year within EU. The magnitude of leaching of metals like Cu and Zn is critical for hazard and risk assessment of these ashes. Although speciation of metals is a key factor to understand and predict metal leaching, speciation of Cu and Zn in BA is not well known.

View Article and Find Full Text PDF

Remediation of soil contaminated with per- and polyfluoroalkyl substances (PFAS) is critical due to the high persistence and mobility of these compounds. In this study, stabilization and solidification (S/S) treatment was evaluated at pilot-scale using 6 tons of soil contaminated with PFAS-containing aqueous film-forming foam. At pilot-scale, long-term PFAS removal over 6 years of precipitation (simulated using irrigation) in leachate from non-treated contaminated reference soil and S/S-treated soil with 15 % binder and 0.

View Article and Find Full Text PDF

Soil pollution constitutes one of the major threats to public health, where spreading to groundwater is one of several critical aspects. In most internationally adopted frameworks for routine risk assessments of contaminated land, generic models and soil guideline values are cornerstones. In order to protect the groundwater at contaminated sites, a common practice worldwide today is to depart from health risk-based limit concentrations for groundwater, and use generic soil-to-groundwater spreading models to back-calculate corresponding equilibrium levels (concentration limits) in soil, which must not be exceeded at the site.

View Article and Find Full Text PDF

Projecting impacts of climate change on metal mobilization at contaminated sites: Controls by the groundwater level.

Sci Total Environ

April 2020

Swedish Geotechnical Institute (SGI), SE-581 93 Linköping, Sweden; Department of Soil and Environment, Swedish University of Agricultural Sciences, Box 7014, Uppsala, Sweden.

Heavy metal and metalloid contamination of topsoils from atmospheric deposition and release from landfills, agriculture, and industries is a widespread problem that is estimated to affect >50% of the EU's land surface. Influx of contaminants from soil to groundwater and their further downstream spread and impact on drinking water quality constitute a main exposure risk to humans. There is increasing concern that the present contaminant loading of groundwater and surface water systems may be altered, and potentially aggravated, by ongoing climate change, through large-scale impacts on recharge and groundwater levels.

View Article and Find Full Text PDF

Over the last decade, there has been rapid development in promoting and implementing sustainable remediation. It is now common to include at least some sustainability considerations in remediation projects. Specific challenges that have been highlighted often relate to economic and social aspects not receiving enough attention: broadening the social aspects, community and meaningful stakeholder engagement, understanding stakeholders' risk perception, and a need for better estimates of site-specific economic costs and benefits.

View Article and Find Full Text PDF