33 results match your criteria: "Sweden and Lund Institute of Advanced Neutron and X-ray Science (LINXS)[Affiliation]"

New opportunities for time-resolved imaging using diffraction-limited storage rings.

J Synchrotron Radiat

September 2024

Synchrotron Radiation Research and NanoLund, Department of Physics, Lund University, Lund, Sweden.

The advent of diffraction-limited storage rings (DLSRs) has boosted the brilliance or coherent flux by one to two orders of magnitude with respect to the previous generation. One consequence of this brilliance enhancement is an increase in the flux density or number of photons per unit of area and time, which opens new possibilities for the spatiotemporal resolution of X-ray imaging techniques. This paper studies the time-resolved microscopy capabilities of such facilities by benchmarking the ForMAX beamline at the MAX IV storage ring.

View Article and Find Full Text PDF

Diffusion of proteins on length scales of their size is crucial for understanding the machinery of living cells. X-ray photon correlation spectroscopy (XPCS) is currently the only way to access long-time collective diffusion on these length scales, but radiation damage so far limits the use in biological systems. We apply a new approach to use XPCS to measure cage relaxation in crowded α-crystallin solutions.

View Article and Find Full Text PDF

This study investigates possible structural changes of an intrinsically disordered protein (IDP) when it adsorbs to a solid surface. Experiments on IDPs primarily result in ensemble averages due to their high dynamics. Therefore, molecular dynamics (MD) simulations are crucial for obtaining more detailed information on the atomistic and molecular levels.

View Article and Find Full Text PDF

Extending depolarized DLS measurements to turbid samples.

J Colloid Interface Sci

December 2022

Division of Physical Chemistry, Department of Chemistry, Lund University, Lund, Sweden; Lund Institute of advanced Neutron and X-ray Science LINXS, Lund University, Lund, Sweden. Electronic address:

The application of dynamic light scattering to soft matter systems has strongly profited from advanced approaches such as the so-called modulated 3D cross correlation technique (Mod3D-DLS) that suppress contributions from multiple scattering, and can therefore be used for the characterization of turbid samples. Here we now extend the possibilities of this technique to allow for depolarized light scattering (Mod3D-DDLS) and thus obtain information on both translational and rotational diffusion, which is important for the characterization of anisotropic particles. We describe the required optical design and test the performance of the approach for increasingly turbid samples using well defined anisotropic colloidal models systems.

View Article and Find Full Text PDF

Nakhlite meteorites are igneous rocks from Mars that were aqueously altered ~630 million years ago. Hydrothermal systems on Earth are known to provide microhabitats; knowledge of the extent and duration of these systems is crucial to establish whether they could sustain life elsewhere in the Solar System. Here, we explore the three-dimensional distribution of hydrous phases within the Miller Range 03346 nakhlite meteorite using nondestructive neutron and x-ray tomography to determine whether alteration is interconnected and pervasive.

View Article and Find Full Text PDF

Stimuli-responsive self-assembly of (an) isotropic colloids has resulted in a plethora of self-assembled structures with potential applications in fabricating smart materials. A lack of detailed understanding of the interplay between these self-assembled structures and the resulting dynamics has often impeded the exploitation of their full potential. Herein, we have unveiled the relationship between the field-driven self-assembled structures and the corresponding collective dynamics at the nearest neighbor length scale using X-ray photon correlation spectroscopy and magnetic colloidal ellipsoids.

View Article and Find Full Text PDF
Article Synopsis
  • Wheat is a major global staple crop, and new varieties with varied grain compositions can expand its uses.
  • The study focused on oil-accumulating transgenic wheat, revealing increased lipid (triacylglycerol) and decreased starch content in developing grains.
  • Mature grains exhibited reduced weight and altered morphology, affecting milling processes and leading to bran contamination in flour.
View Article and Find Full Text PDF

The consecutive binding of two potassium ions to a bis(18-crown-6) analogue of Tröger's base (BCETB) in water was studied by isothermal titration calorimetry using four different salts, KCl, KI, KSCN, and KSO. A counterintuitive result was observed: the enthalpy change associated with the binding of the second ion is more negative than that of the first (Δ < Δ). This remarkable finding is supported by continuum electrostatic theory as well as by atomic scale replica exchange molecular dynamics simulations, where the latter robustly reproduces experimental trends for all simulated salts, KCl, KI, and KSCN, using multiple force fields.

View Article and Find Full Text PDF

Shape Matters in Magnetic-Field-Assisted Assembly of Prolate Colloids.

ACS Nano

February 2022

Division of Physical Chemistry, Department of Chemistry, Lund University, Lund SE-22100, Sweden.

An anisotropic colloidal shape in combination with an externally tunable interaction potential results in a plethora of self-assembled structures with potential applications toward the fabrication of smart materials. Here we present our investigation on the influence of an external magnetic field on the self-assembly of hematite-silica core-shell prolate colloids for two aspect ratios ρ = 2.9 and 3.

View Article and Find Full Text PDF

In this study, a new method was developed to successfully design sustainable microfibers from wheat gluten proteins using a nonreducing solvent and electrospinning. We explored the morphology by X-ray tomography, scanning electron microscopy (SEM), and confocal laser scanning microscopy (CLSM), protein chemistry and cross-linking by size exclusion-high-performance liquid chromatography (SE-HPLC), and secondary structure by Fourier transform infrared spectroscopy (FT-IR) of fibers containing 15 and 20% of gluten. The impact of heat (130 °C) post-treatment on the polymerization properties of fibers and their absorption performance in different biofluids were also evaluated.

View Article and Find Full Text PDF

The behaviour of subsurface-reservoir porous rocks is a central topic in the resource engineering industry and has relevant applications in hydrocarbon, water production, and CO2 sequestration. One of the key open issues is the effect of deformation on the hydraulic properties of the host rock and, specifically, in saturated environments. This paper presents a novel full-field data set describing the hydro-mechanical properties of porous geomaterials through in situ neutron and X-ray tomography.

View Article and Find Full Text PDF

Nanoscale structural and mechanical characterization of thin bicontinuous cubic phase lipid films.

Colloids Surf B Biointerfaces

February 2022

Consorzio Interuniversitario per lo Sviluppo dei Sistemi a Grande Interfase, 50019 Firenze, Italy; Consiglio Nazionale delle Ricerche, Istituto per lo Studio dei Materiali Nanostrutturati, 40129 Bologna, Italy.

The mechanical response of lipid membranes to nanoscale deformations is of fundamental importance for understanding how these interfaces behave in multiple biological processes; in particular, the nanoscale mechanics of non-lamellar membranes represents a largely unexplored research field. Among these mesophases, inverse bicontinuous cubic phase Q membranes have been found to spontaneously occur in stressed or virally infected cells and to play a role in fundamental processes, such as cell fusion and food digestion. We herein report on the fabrication of thin ( ̴150 nm) supported Q cubic phase lipid films (SQFs) and on their characterization via multiple techniques including Small Angle X-Ray Scattering (SAXS), Ellipsometry and Atomic Force Microscopy (AFM).

View Article and Find Full Text PDF

The bioactivity, biological fate and cytotoxicity of nanomaterials when they come into contact with living organisms are determined by their interaction with biomacromolecules and biological barriers. In this context, the role of symmetry/shape anisotropy of both the nanomaterials and biological interfaces in their mutual interaction, is a relatively unaddressed issue. Here, we study the interaction of gold nanoparticles (NPs) of different shapes (nanospheres and nanorods) with biomimetic membranes of different morphology, flat membranes (2D symmetry, representative of the most common plasma membrane geometry), and cubic membranes (3D symmetry, representative of non-lamellar membranes, found in Nature under certain biological conditions).

View Article and Find Full Text PDF

Microscopy and particle-based simulations are both powerful techniques to study aggregated particulate matter such as colloidal gels. The data provided by these techniques often contains information on a wide array of length scales, but structural analysis methods typically focus on the local particle arrangement, even though the data also contains information about the particle network on the mesoscopic length scale. In this paper, we present a MATLAB software package for quantifying mesoscopic network structures in colloidal samples.

View Article and Find Full Text PDF

The bone tissue formed at the contact interface with metallic implants, particularly its 3D microstructure, plays a pivotal role for the structural integrity of implant fixation. X-ray tomography is the classical imaging technique used for accessing microstructural information from bone tissue. However, neutron tomography has shown promise for visualising the immediate bone-metal implant interface, something which is highly challenging with x-rays due to large differences in attenuation between metal and biological tissue causing image artefacts.

View Article and Find Full Text PDF

Bicontinuous cubic liquid crystalline phase nanoparticles stabilized by softwood hemicellulose.

Colloids Surf B Biointerfaces

July 2021

Division of Physical Chemistry, Department of Chemistry, Lund University, P.O. Box 124, Lund, SE-221 00, Sweden; NanoLund, Lund University, Lund, Sweden; Lund Institute of Advanced Neutron and X-ray Science LINXS, Lund, Sweden.

The colloidal stability of lipid based cubosomes, aqueous dispersion of inverse bicontinuous cubic phase, can be significantly increased by a stabilizer. The most commonly used stabilizers are non-ionic tri-block copolymers, poloxamers, which adsorb at the lipid-water interface and hence sterically stabilize the dispersion. One of the challenges with these synthetic polymers is the effect on the internal structure of the cubosomes and the potential toxicity when these nanoparticles are applied as nanomedicine platforms.

View Article and Find Full Text PDF

Background: Quinoa (Chenopodium quinoa Willd.) flour and processed traditional Peruvian quinoa breakfast foods were studied to evaluate the effect of extrusion and post-processing on protein properties, morphology and nutritional characteristics (amino acids and dietary fibers).

Results: The extrusion increased quinoa protein crosslinking and aggregation observed by size exclusion high-performance liquid chromatography and the amount of soluble fibers, as well as decreasing the amounts of insoluble fibers in the processed foods.

View Article and Find Full Text PDF

Apolipoprotein A-I (ApoA-I) of high density lipoproteins (HDLs) is essential for the transportation of cholesterol between peripheral tissues and the liver. However, specific mutations in ApoA-I of HDLs are responsible for a late-onset systemic amyloidosis, the pathological accumulation of protein fibrils in tissues and organs. Carriers of these mutations do not exhibit increased cardiovascular disease risk despite displaying reduced levels of ApoA-I/HDL cholesterol.

View Article and Find Full Text PDF

In this article, we demonstrate a method for inducing reversible crystal-to-crystal transitions in binary mixtures of soft colloidal particles. Through a controlled decrease of salinity and increasingly dominating electrostatic interactions, a single sample is shown to reversibly organize into entropic crystals, electrostatic attraction-dominated crystals, or aggregated gels, which we quantify using microscopy and image analysis. We furthermore analyze crystalline structures with bond order analysis to discern between two crystal phases.

View Article and Find Full Text PDF

Apolipoprotein A-I (ApoA-I) of high-density lipoprotein (HDL) induces glucose uptake by muscle tissues and stimulates pancreatic insulin secretion, and also facilitates cholesterol transport in circulation, and is explored for anti-diabetic and anti-atherosclerotic treatments. As the better alternative to complex protein-lipid formulations it was recently established that the C-terminal region of the ApoA-I protein singly improves the metabolic control and prevents formation of atherosclerotic plaques. Additional investigations of peptides based on the ApoA-I structure may lead to novel anti-diabetic drugs.

View Article and Find Full Text PDF

To comprehend the most detrimental characteristics behind bone fractures, it is key to understand the material and tissue level strain limits and their relation to failure sites. The aim of this study was to investigate the three-dimensional strain distribution and its evolution during loading at the sub-trabecular level in trabecular bone tissue. Human cadaver trabecular bone samples were compressed in situ until failure, while imaging with high-resolution synchrotron radiation X-ray tomography.

View Article and Find Full Text PDF

Hybrid anisotropic microgels were synthesised using mesoporous silica as core particles. By finely controlling the synthesis conditions, the latter can be obtained with different shapes such as platelets, primary particles or rods. Using the core particles as seeds for precipitation polymerisation, a crosslinked poly(-isopropylacrylamide) (PNIPAM) microgel shell could be grown at the surface, conferring additional thermo-responsive properties.

View Article and Find Full Text PDF

Magnesium transporter A (MgtA) is an active transporter responsible for importing magnesium ions into the cytoplasm of prokaryotic cells. This study focuses on the peptide corresponding to the intrinsically disordered N-terminal region of MgtA, referred to as KEIF. Primary-structure and bioinformatic analyses were performed, followed by studies of the undisturbed single chain using a combination of techniques including small-angle X-ray scattering, circular dichroism spectroscopy, and atomistic molecular-dynamics simulations.

View Article and Find Full Text PDF

Anisotropic dynamics on the colloidal length scale is ubiquitous in nature. Of particular interest is the dynamics of systems approaching a kinetically arrested state. The failure of classical techniques for investigating the dynamics of highly turbid suspensions has contributed toward the limited experimental information available up until now.

View Article and Find Full Text PDF

A microgel-Pickering emulsion route to colloidal molecules with temperature-tunable interaction sites.

Soft Matter

February 2020

Division of Physical Chemistry, Lund University, POB 124, SE-22100 Lund, Sweden. and NanoLund, POB 118, SE-22100 Lund, Sweden and Lund Institute of Advanced Neutron and X-ray Science (LINXS), Scheelevägen 19, SE-22370 Lund, Sweden.

A simple Pickering emulsion route has been developed for the assembly of temperature-responsive poly(N-isopropylacrylamide) (PNIPAM) microgel particles into colloidal molecules comprising a small number of discrete microgel interaction sites on a central oil emulsion droplet. Here, the surface activity of the microgels serves to drive their assembly through adsorption to growing polydimethylsiloxane (PDMS) emulsion oil droplets of high monodispersity, prepared in situ via ammonia-catalysed hydrolysis and condensation of dimethyldiethoxysilane (DMDES). A dialysis step is employed in order to limit further growth once the target assembly size has been reached, thus yielding narrowly size-distributed, colloidal molecule-like microgel-Pickering emulsion oil droplets with well-defined microgel interaction sites.

View Article and Find Full Text PDF