1,248 results match your criteria: "Sungkyunkwan University-SKKU[Affiliation]"

Spontaneous Formation of Single-Crystalline Spherulites in a Chiral 2D Hybrid Perovskite.

J Am Chem Soc

January 2025

Department of Chemical and Environmental Engineering, Yale University, New Haven, Connecticut 06520, United States.

In two-dimensional (2D) chiral metal-halide perovskites (MHPs), chiral organic spacers induce structural chirality and chiroptical properties in the metal-halide sublattice. This structural chirality enables reversible crystalline-glass phase transitions in (-NEA)PbBr, a prototypical chiral 2D MHP where NEA represents 1-(1-naphthyl)ethylammonium. Here, we investigate two distinct spherulite states of (-NEA)PbBr, exhibiting either radial-like or stripe-like banded patterns depending on the annealing conditions of the amorphous film.

View Article and Find Full Text PDF

Photobiomodulation (PBM) is considered an effective and safe therapeutic modality in supporting the treatment of complications from a global pandemic-diabetes. In this study, PBM therapy is investigated to accelerate wound healing in diabetic mice (DM), under the combined biological effects of red light from a red organic light-emitting diode (ROLED) and near-infrared (NIR) light from an NIR conversion film (NCF) with dispersed CuInS/ZnS quantum dots (QDs). The QD concentration and the NCF structure were optimized to maximize the optical properties and mechanical stability.

View Article and Find Full Text PDF

Aerosol CVD Carbon Nanotube Thin Films: From Synthesis to Advanced Applications: A Comprehensive Review.

Adv Mater

January 2025

Department of Nano Engineering, Department of Nano Science and Technology, Sungkyunkwan University Advanced Institute of Nanotechnology (SAINT), Sungkyunkwan University (SKKU), Seobu-ro 2066, Jangan-gu, Suwon, 16419, Republic of Korea.

Carbon nanotubes (CNTs) produced by the floating-catalyst chemical vapor deposition (FCCVD) method are among the most promising nanomaterials of today, attracting interest from both academic and industrial sectors. These CNTs exhibit exceptional electrical conductivity, optical properties, and mechanical resilience due to their binder-free and low-defect structure, while the FCCVD method enables their continuous and scalable synthesis. Among the methodological FCCVD variations, aerosol CVD' is distinguished by its production of freestanding thin films comprising macroscale CNT networks, which exhibit superior performance and practical applicability.

View Article and Find Full Text PDF

Ternary InGaP quantum dots (QDs) have emerged as promising materials for efficient blue emission, owing to their tunable bandgap, high stability, and superior optoelectronic properties. However, most reported methods for Ga incorporation into the InP structure have predominantly relied on cation exchange in pre-grown InP QDs at elevated temperatures above 280 °C. This is largely due to the fact that, when heating In and P precursors in the presence of Ga, an InP/GaP core-shell structure readily forms.

View Article and Find Full Text PDF

Food waste condensate (FWC) is a valuable source for recovering short-chain fatty acids (SCFAs) through methods such as supported liquid membrane contactors. Containing organic compounds like acetate, propionate, and butyrate, FWC offers a rich substrate for efficient SCFA extraction. Recovering SCFAs from FWC provides notable environmental advantages, including reducing waste and generating high-value products for industries such as bioenergy and chemical production.

View Article and Find Full Text PDF

Research on manipulating materials using light has garnered significant interest, yet examples of controlling electronic polarization in magnetic materials remain scarce. Here, the hysteresis of electronic polarization in the anti-ferromagnetic semiconductor FePS is demonstrated via light. Below the Néel temperature, linear dichroism (i.

View Article and Find Full Text PDF

Sprayable hydrogels have emerged as a transformative innovation in biomedical technology, offering a versatile, efficient, and minimally invasive platform for various clinical applications. They form gels upon tissue contact, enabling seamless application on even complex surfaces. This property is especially useful in wound care, drug delivery, and tissue engineering, where localized and sustained release of therapeutics is essential.

View Article and Find Full Text PDF

Kinetically Tailored Chemical Vapor Deposition Approach for Synthesizing High-Quality Large-Area Non-Layered 2D Materials.

Small

January 2025

KU-KIST Graduate School of Converging Science and Technology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea.

Non-layered 2D materials offer unique and more advantageous physicochemical properties than those of conventional 2D layered materials. However, the isotropic chemical bonding nature of non-layered materials hinders their lateral growth, making the synthesis of large-area continuous thin films challenging. Herein, a facile kinetically tailored chemical vapor deposition (KT-CVD) approach is introduced for the synthesis of 2D molybdenum nitride (MoN), a representative non-layered material.

View Article and Find Full Text PDF

Improving the interface characteristics between the hole-transport layer (HTL) and perovskite absorber layer is crucial for achieving maximum efficiency in inverted perovskite solar cells (PSCs). This paper presents an effective functional compensation layer (FCL) composed of benzothiophene derivatives, particularly 5-(trifluoromethyl)-1-benzothiophene-2-carboxylic acid (TFMBTA); this layer is introduced between the MeO-2PACz HTL and perovskite absorber layer to improve the interfacial characteristics between them. This FCL improves charge transfer, hole extraction, and perovskite deposition by improving the surface morphology of the HTL and optimizing the energy level alignment.

View Article and Find Full Text PDF

Exploring critical pathways using robust strategies: Nanodiamond electrocatalysts for promoting boron removal via electrosorption.

Water Res

December 2024

Department of Global Smart City, Sungkyunkwan University (SKKU), 2066, Seobu-ro, Jangan-gu, Suwon, Gyeonggi-do, 16419, Republic of Korea. Electronic address:

Article Synopsis
  • The study introduces a new electrosorption technology using nanodiamonds to effectively remove boron from wastewater, achieving an impressive boron adsorption capacity of 10.5 μmol/g.
  • It highlights the importance of different gas purging methods on the electrosorption process and characterizes the deterioration of electrodes through advanced spectroscopy techniques.
  • A machine learning model was developed to predict effluent properties and optimize the system, demonstrating the potential of ML in enhancing water treatment processes.
View Article and Find Full Text PDF

A central tenet of cognitive neuroscience is that humans build an internal model of the external world and use mental simulation of the model to perform physical inferences. Decades of human experiments have shown that behaviors in many physical reasoning tasks are consistent with predictions from the mental simulation theory. However, evidence for the defining feature of mental simulation - that neural population dynamics reflect simulations of physical states in the environment - is limited.

View Article and Find Full Text PDF

Spiking neural network algorithms require fine-tuned neuromorphic hardware to increase their effectiveness. Such hardware, mainly digital, is typically built on mature silicon nodes. Future artificial intelligence applications will demand the execution of tasks with increasing complexity and over timescales spanning several decades.

View Article and Find Full Text PDF

Nanoporous metals have unique potentials for energy applications with a high surface area despite the percolating structure. Yet, a highly corrosive environment is required for the synthesis of porous metals with conventional dealloying methods, limiting the large-scale fabrication of porous structures for reactive metals. In this study, we synthesize a highly reactive Mg nanoporous system through a facile organic solution-based approach without any harsh etching.

View Article and Find Full Text PDF

Hierarchically-structured ratchet skimmer with superhydrophilicity for continuous recovery of high-viscosity oil.

Mar Pollut Bull

December 2024

Extreme Materials Research Center, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea; Korea Institute of Science and Technology - Sungkyunkwan University Carbon-Neutral Research Center, Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea; School of Chemical Engineering, Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea. Electronic address:

Oil spill accidents have series environmental and economic impacts, increasing the demand for efficient technologies to recover oil from contaminated waters. In this study, a hierarchically structured ratchet surface with superhydrophilicity was presented as a novel oil skimming mechanism for the recovery of high-viscosity oil, particularly low-sulfur fuel oil (LSFO), which has recently been used as marine fuel in open water environments. The interaction between the superhydrophilic ratchet and oil provides favorable conditions for oil retention at the water surface.

View Article and Find Full Text PDF

Excessive reactive oxygen species (ROS) generated by ultraviolet (UV) irradiation significantly contribute to photoaging by increasing the level of matrix metalloproteinases (MMPs), accelerating collagen degradation. Commercial dermal fillers offer temporary wrinkle reduction via volume enhancement. In this study, we propose tilapia-derived collagen hydrogels embedded with ceria nanoparticles (Ce@Col gels) as long-lasting dermal fillers for UVB-induced photoaging.

View Article and Find Full Text PDF

The rational design of multicomponent heterostructure is an effective strategy to enhance the catalytic activity of electrocatalysts for water and seawater electrolysis in alkaline conditions. Herein, MOF-derived nitrogen-doped carbon/nickel-cobalt sulfides coupled vertically aligned Rhenium disulfide (ReS) on carbon cloth (NC-CoNiS@ReS/CC) are constructed via hydrothermal and activation approaches. Experimental and theoretical analysis demonstrates that the strong interactions between multiple interfaces promote electron redistribution and facilitate water dissociation, thereby optimizing *H adsorption energy for the hydrogen evolution reaction (HER).

View Article and Find Full Text PDF

The native extracellular matrix is continuously remodeled to form complex interconnected network structures that reversibly regulate stem cell behaviors. Both regulation and understanding of its intricate dynamicity can help to modulate numerous cell behaviors. However, neither of these has yet been achieved due to the lack of designing and modeling such complex structures with dynamic controllability.

View Article and Find Full Text PDF

P-Type Vertical FETs Realized by Using Fermi-Level Pinning-Free 2D Metallic Electrodes.

Nano Lett

January 2025

SKKU Advanced Institute of Nano Technology and Department of Nano Science and Technology, Sungkyunkwan University, Suwon 16419, Republic of Korea.

In two-dimensional (2D) nanomaterial electronics, vertical field-effect transistors (VFETs), where charges flow perpendicular to the channel materials, hold promise due to the ease of forming ultrashort channel lengths by utilizing the thinness of 2D materials. However, the poor performance of p-type VFET arises from the lack of a gate-field-penetrating electrode with suitable work functions, which is essential for VFET operation. This motivated us to replace graphene (work function of ∼4.

View Article and Find Full Text PDF

Oxygen Dimerization-Driven Cation Migration Induces Voltage Hysteresis in Disordered Rocksalt Cathodes.

J Am Chem Soc

January 2025

Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States.

Despite the potential to increase the energy limit of Li-rich cathodes by using oxygen redox, its practicality has been limited by the accompanying structural changes and voltage hysteresis. While voltage hysteresis is commonly associated with transition metal (TM) migration and oxygen dimerization, the specific contribution of each is unclear. We provide a mechanistic insight into how each of these changes induces hysteresis in a representative Li-rich disordered rocksalt cathode, LiMnTiO.

View Article and Find Full Text PDF

Colistin is essential for treating multidrug-resistant Gram-negative bacterial infections but has significant nephrotoxic side effects. Traditional approaches for studying colistin's nephrotoxicity are challenged by the rapid metabolism of its prodrug, colistin methanesulfonate and the difficulty of obtaining adequate plasma from critically ill patients. To address these challenges, we developed the Spheroid Nephrotoxicity Assessing Platform (SNAP), a microfluidic device that efficiently detects colistin-induced toxicity in renal proximal tubular epithelial cell (RPTEC) spheroids within 48 hours using just 200 μL of patient plasma.

View Article and Find Full Text PDF

This study presents a synthesis method for Au tetrahedral nanoframes (Td NFs) through a rationally designed multiple-step process, followed by an investigation of their distinctively ordered self-assembly for enhanced performance in surface-enhanced Raman spectroscopy (SERS). Two distinct Au Td NF building blocks are synthesized, exhibiting mono-rim or dual-rim morphologies. The mono-rim structure lacks intra-nanogaps, whereas the dual-rim configuration features well-defined intra-nanogaps.

View Article and Find Full Text PDF

Implantable electrochemicals stand out as promising candidates for resolving peripheral nerve injuries. However, challenges persist in designing bioelectronic materials that mimic tissue due to modulus matching, conformal adhesion, and immune responses. Herein, we present a nerve-mimicking design rationale for biocompatible hydrogel-based electroceuticals with a tissue-like modulus, robust and conformal tissue adhesion, exceptional mechanical toughness, and efficient stress dissipation.

View Article and Find Full Text PDF

Mesoporous polydopamine nanoparticle-based tolerogenic vaccine induces antigen-specific immune tolerance to prevent and treat autoimmune multiple sclerosis.

Biomaterials

May 2025

School of Chemical Engineering, Sungkyunkwan University (SKKU), Suwon, 16419, Republic of Korea; Department of Health Sciences and Technology, Samsung Advanced Institute for Health Sciences & Technology (SAIHST), Sungkyunkwan University (SKKU), Suwon, 16419, Republic of Korea; Department of MetaBioHealth, Sungkyunkwan University (SKKU), Suwon, 16419, Republic of Korea; Biomedical Institute for Convergence at SKKU (BICS), Sungkyunkwan University (SKKU), Suwon, 16419, Republic of Korea; Institute of Quantum Biophysics (IQB), Sungkyunkwan University, Suwon, 16419, Republic of Korea. Electronic address:

Multiple sclerosis (MS) is a chronic neurological disorder derived from autoreactive immune system attacking the protective myelin sheath that surrounds nerves in the central nervous system (CNS). Here, a tolerogenic nanovaccine for generating an antigen-specific immune tolerance for treating MS is proposed. It consisted of a mesoporous polydopamine (mPDA) nanoparticle, characterized by high reactive oxygen species (ROS)-scavenging property, loaded with MS-derived autoantigen.

View Article and Find Full Text PDF