183 results match your criteria: "Sugarcane Breeding Institute[Affiliation]"

Background: Pongamia is considered an important biofuel species worldwide. Drought stress in the early growth stages of Pongamia influences negatively on the germination and seedling development. Due to lack of cultivar stability under drought stress conditions, establishment of successful plantation in drought hit areas becomes a major problem.

View Article and Find Full Text PDF

Marker-assisted selection (MAS) has been widely used in the last few decades in plant breeding programs for the mapping and introgression of genes for economically important traits, which has enabled the development of a number of superior cultivars in different crops. In sugarcane, which is the most important source for sugar and bioethanol, marker development work was initiated long ago; however, marker-assisted breeding in sugarcane has been lagging, mainly due to its large complex genome, high levels of polyploidy and heterozygosity, varied number of chromosomes, and use of low/medium-density markers. Genomic selection (GS) is a proven technology in animal breeding and has recently been incorporated in plant breeding programs.

View Article and Find Full Text PDF

Advances in sugarcane breeding have contributed significantly to improvements in agronomic traits and crop yield. However, the growing global demand for sugar and biofuel in the context of climate change requires further improvements in cane and sugar yields. Attempts to achieve the desired rates of genetic gain in sugarcane by conventional breeding means are difficult as many agronomic traits are genetically complex and polygenic, with each gene exerting small effects.

View Article and Find Full Text PDF

Developing rice varieties with enhanced levels of functional bioactives is an important intervention for achieving food and nutritional security in Asia where rice is the staple food and Type II diabetes incidences are higher. The present study was aimed at dissecting out the molecular events underlying the accumulation of bio active compounds in pigmented traditional rice Kavuni. Comparative transcriptome profiling in the developing grains of Kavuni and a white rice variety ASD 16 generated 37.

View Article and Find Full Text PDF

The global climate change and unfavourable abiotic and biotic factors are limiting agricultural productivity and therefore intensifying the challenges for crop scientists to meet the rising demand for global food supply. The introduction of applied genetics to agriculture through plant breeding facilitated the development of hybrid varieties with improved crop productivity. However, the development of new varieties with the existing gene pools poses a challenge for crop breeders.

View Article and Find Full Text PDF

Genetic biofortification is recognized as a cost-effective and sustainable strategy to reduce micronutrient malnutrition. Genomic regions governing grain iron concentration (GFeC), grain zinc concentration (GZnC), and thousand kernel weight (TKW) were investigated in a set of 280 diverse bread wheat genotypes. The genome-wide association (GWAS) panel was genotyped using 35 K Axiom Array and phenotyped in five environments.

View Article and Find Full Text PDF

TrmB Family Transcription Factor as a Thiol-Based Regulator of Oxidative Stress Response.

mBio

August 2022

Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences, University of Floridagrid.15276.37, Gainesville, Florida, USA.

Oxidative stress causes cellular damage, including DNA mutations, protein dysfunction, and loss of membrane integrity. Here, we discovered that a TrmB (transcription regulator of operon) family protein (Pfam PF01978) composed of a single winged-helix DNA binding domain (InterPro IPR002831) can function as thiol-based transcriptional regulator of oxidative stress response. Using the archaeon Haloferax volcanii as a model system, we demonstrate that the TrmB-like OxsR is important for recovery of cells from hypochlorite stress.

View Article and Find Full Text PDF

The differential compatibility responses of sugarcane to Colletotrichum falcatum pathotypes depend on the nature of both host primary defence signalling cascades and pathogen virulence. The complex polyploidy of sugarcane genome and genetic variations in different cultivars of sugarcane remain a challenge to identify and characterise specific genes controlling the compatible and incompatible interactions between sugarcane and the red rot pathogen, Colletotrichum falcatum. To avoid host background variation in the interaction study, suppression subtractive hybridization (SSH)-based next-generation sequencing (NGS) technology was used in a sugarcane cultivar Co 7805 which is compatible with one C.

View Article and Find Full Text PDF

Sugarcane is one of the important food and bioenergy crops, cultivated all over the world except European continent. Like many other crops, sugarcane production and quality are hampered by various plant pathogens, among them viruses that infect systemically and cause severe impact to cane growth. The viruses are efficiently managed by their elimination through tissue culture combined with molecular diagnostics, which could detect virus titre often low at 10 g mL.

View Article and Find Full Text PDF

Sugarcane is an economically important commercial crop which provides raw material for the production of sugar, jaggery, bioethanol, biomass and other by-products. Sugarcane breeding till today heavily relies on conventional breeding approaches which is time consuming, laborious and costly. Integration of marker-assisted selection (MAS) in sugarcane genetic improvement programs for difficult to select traits like sucrose content, resistance to pests and diseases and tolerance to abiotic stresses will accelerate varietal development.

View Article and Find Full Text PDF

Raffinose family oligosaccharides (RFOs) are widespread across the plant kingdom, and their concentrations are related to the environment, genotype, and harvest time. RFOs are known to carry out many functions in plants and humans. In this paper, we provide a comprehensive review of RFOs, including their beneficial and anti-nutritional properties.

View Article and Find Full Text PDF

Low density polyethylene (LDPE) based nanocomposite films made from different levels of nanoclay, compatibilizer and thickness were evaluated for the storage stability of sugarcane juice for 60 days under ambient condition. During the storage period, important physico-chemical properties such as pH, total sugars, total soluble solids and overall acceptability were decreased with respect to increased level of nanoclay and compatibilizer as well as decreased thickness of film. Total plate count was nil till the storage period of 15 days and then there was an increase in microbial population.

View Article and Find Full Text PDF

Carbohydrate active enzymes (CAZy) regulate cellulolytic and pectinolytic enzymes in causing red rot in sugarcane.

3 Biotech

February 2022

Division of Crop Protection, Sugarcane Breeding Institute, Indian Council of Agricultural Research (ICAR), Tamil Nadu, Coimbatore, 641007 India.

Unlabelled: an ascomycete pathogen causes red rot of sugarcane which is specialized to infect cane stalks. Cellulolytic and pectinolytic enzymes are necessary for degradation of plant cell wall which stands as barrier for successful fungal pathogenesis. In the study, we have confined to the CAZy genes that regulate cellulolytic and pectinolytic enzymes in two distinctive pathotypes of Comparative transcriptome analysis revealed that a number of CAZy genes producing cellulolytic and pectinolytic enzyme were present in the virulent (671) and least virulent (RoC) pathotypes.

View Article and Find Full Text PDF

Saccharum spontaneum, a wild relative of sugarcane, is highly tolerant to drought and salinity. The exploitation of germplasm resources for salinity tolerance is a major thrust area in India. In this study, we utilized suppression subtractive hybridization (SSH) followed by sequencing for the identification of upregulated transcripts during salinity stress in S.

View Article and Find Full Text PDF

Red rot of sugarcane caused by the hemi-biotrophic fungal pathogen, Colletotrichum falcatum, is a major threat to sugarcane cultivation in many tropical countries such as India, Bangladesh, and Pakistan. With the accumulating information on pathogenicity determinants, namely, effectors and pathogen-associated molecular patterns (PAMPs) of C. falcatum, it is of paramount importance to decipher the functional role of these molecular players that may ultimately decide upon the outcome of sugarcane-C.

View Article and Find Full Text PDF

Rice production is affected by many biotic and abiotic stresses; among them, bacterial blight (BB) and blast diseases and low soil phosphorous stress cause significant yield losses. The present study was carried out with the objective of combining the BB resistance gene, Xa21, the blast resistance gene, Pi54, and the low soil phosphorous tolerance QTL/gene, Pup1, into the genetic background of the Indian mega-rice variety, MTU1010 (Cottondora Sannalu), through marker-assisted pedigree breeding. RP5973-20-9-8-24-12-7 [a near isogenic line (NIL) of MTU1010 possessing Pup1] and RP6132 [a NIL of Akshayadhan possessing Xa21 + Pi54] were crossed and 'true' F1s were identified, using the target gene-specific markers and selfed.

View Article and Find Full Text PDF

Finger millet, an orphan crop, possesses immense potential in mitigating climate change and could offer threefold security in terms of food, fodder, and nutrition. It is mostly cultivated as a subsistence crop in the marginal areas of plains and hills. Considering the changes in climate inclusive of recurrent weather vagaries witnessed every year, it is crucial to select stable, high-yielding, area-specific, finger millet cultivars.

View Article and Find Full Text PDF

Erianthus arundinaceus [Retzius] Jeswiet, a wild relative of sugarcane has a high biomass production potential and a reservoir of many genes for superior agronomic traits and tolerance to biotic and abiotic stresses. A comparative physiological, anatomical and root transcriptome analysis were carried out to identify the salt-responsive genes and metabolic pathways associated with salt-tolerant E. arundinaceus genotype IND99-907 and salinity-sensitive sugarcane genotype Co 97010.

View Article and Find Full Text PDF

In this study, we report the whole genome assembly of Bt 62, a novel isolate harbouring cry8 holotype gene identified by us earlier. Sequencing was carried out using a combination of Illumina NextSeq 500 and Oxford Nanopore sequencing Technologies (ONT). The final assembled genome was 6.

View Article and Find Full Text PDF

High-level synthesis and secretion of laccase, a metalloenzyme biocatalyst, by the halophilic archaeon Haloferax volcanii.

Methods Enzymol

March 2022

Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, FL, United States; Genetics Institute, University of Florida, Gainesville, FL, United States. Electronic address:

Haloarchaea and their enzymes have extremophilic properties desirable for use as platform organisms and biocatalysts in the bioindustry. These GRAS (generally regarded as safe) designated microbes thrive in hypersaline environments and use a salt-in strategy to maintain osmotic homeostasis. This unusual strategy has resulted in the evolution of most of the intracellular and extracellular enzymes of haloarchaea to be active and stable not only in high salt (2-5M) but also in low salt (0.

View Article and Find Full Text PDF

Background: Sporisorium scitamineum is the causative agent of smut disease in sugarcane. The tricky life cycle of S. scitamineum consists of three distinct growth stages: diploid teliospores, haploid sporidia and dikaryotic mycelia.

View Article and Find Full Text PDF

Sugarcane is a C4 and agro-industry-based crop with a high potential for biomass production. It serves as raw material for the production of sugar, ethanol, and electricity. Modern sugarcane varieties are derived from the interspecific and intergeneric hybridization between , and other wild relatives.

View Article and Find Full Text PDF

Sugarcane is a trans-seasonal long-duration crop and tillering phase (60-150 days) is the most sensitive phase for moisture stress, causing significant reduction in biomass accumulation. The study focussed to assess the Genotype × Environment Interaction (GEI) for tillering phase moisture stress and to identify the stable genotypes in sugarcane. The study dealt with 14 drought tolerant genotypes and two standards (Co 86032 and CoM 0265) which were evaluated in two plant and one ratoon trials at four locations in Maharashtra, India.

View Article and Find Full Text PDF

With an objective of mapping novel low soil P (Phosphorus) tolerance loci in the non-Pup1 type donor rice line, Wazuhophek, we screened a recombinant inbred line (RIL) mapping population consisting of 330 lines derived from the cross Wazuhophek x Improved Samba Mahsuri (which is highly sensitive to low soil P) in a plot with low soil P for tolerance associated traits. Molecular mapping with SSR markers revealed a total of 16 QTLs (seven major and nine minor QTLs), which are associated with low soil P tolerance related traits. Interestingly, a QTL hotspot, harbouring 10 out of 16 QTLs were identified on the short arm of chromosome 8 (flanked by the makers RM22554 and RM80005).

View Article and Find Full Text PDF