20 results match your criteria: "Stanford University Pacific Grove[Affiliation]"
Symbiont genotype plays a vital role in the ability of a coral host to tolerate rising ocean temperatures, with some members of the family Symbiodiniaceae possessing more thermal tolerance than others. While existing studies on genetic structure in symbiont populations have focused on broader scales of 10-100 s of km, there is a noticeable gap in understanding the seascape genetics of coral symbionts at finer-yet ecologically and evolutionarily relevant-scales. Here, we mapped short reads from 271 holobiont genome libraries of individual colonies to protein coding genes from the chloroplast genome to identify patterns of symbiont population genetic structure.
View Article and Find Full Text PDFCarotenoid pigments are the basis for much red, orange, and yellow coloration in nature and central to visual signaling. However, as pigment concentration increases, carotenoid signals not only darken and become more saturated but they also redshift; for example, orange pigments can look red at higher concentration. This occurs because light experiences exponential attenuation, and carotenoid-based signals have spectrally asymmetric reflectance in the visible range.
View Article and Find Full Text PDFThe ability of local populations to adapt to future climate conditions is facilitated by a balance between short range dispersal allowing local buildup of adaptively beneficial alleles, and longer dispersal moving these alleles throughout the species range. Reef building corals have relatively low dispersal larvae, but most population genetic studies show differentiation only over 100s of km. Here, we report full mitochondrial genome sequences from 284 tabletop corals () from 39 patch reefs in Palau, and show two signals of genetic structure across reef scales from 1 to 55 km.
View Article and Find Full Text PDFVariation in behavior within marine and terrestrial species can influence the functioning of the ecosystems they inhabit. However, the contribution of social behavior to ecosystem function remains underexplored. Many coral reef fish species provide potentially insightful models for exploring how social behavior shapes ecological function because they exhibit radical intraspecific variation in sociality within a shared habitat.
View Article and Find Full Text PDFCollective behaviors in biological systems such as coordinated movements have important ecological and evolutionary consequences. While many studies examine within-species variation in collective behavior, explicit comparisons between functionally similar species from different taxonomic groups are rare. Therefore, a fundamental question remains: how do collective behaviors compare between taxa with morphological and physiological convergence, and how might this relate to functional ecology and niche partitioning? We examined the collective motion of two ecologically similar species from unrelated clades that have competed for pelagic predatory niches for over 500 million years-California market squid, (Mollusca) and Pacific sardine, (Chordata).
View Article and Find Full Text PDFEcol Evol
May 2021
Megaptera Paris France.
To gain insight into whale shark () movement patterns in the Western Indian Ocean, we deployed eight pop-up satellite tags at an aggregation site in the Arta Bay region of the Gulf of Tadjoura, Djibouti in the winter months of 2012, 2016, and 2017. Tags revealed movements ranging from local-scale around the Djibouti aggregation site, regional movements along the coastline of Somaliland, movements north into the Red Sea, and a large-scale (>1,000 km) movement to the east coast of Somalia, outside of the Gulf of Aden. Vertical movement data revealed high occupation of the top ten meters of the water column, diel vertical movement patterns, and deep diving behavior.
View Article and Find Full Text PDFA wide array of technologies are available for gaining insight into the movement of wild aquatic animals. Although acoustic telemetry can lack the fine-scale spatial resolution of some satellite tracking technologies, the substantially longer battery life can yield important long-term data on individual behavior and movement for low per-unit cost. Typically, however, receiver arrays are designed to maximize spatial coverage at the cost of positional accuracy leading to potentially longer detection gaps as individuals move out of range between monitored locations.
View Article and Find Full Text PDFThe study of local adaptation in the presence of ongoing gene flow is the study of natural selection in action, revealing the functional genetic diversity most relevant to contemporary pressures. In addition to individual genes, genome-wide architecture can itself evolve to enable adaptation. Distributed across a steep thermal gradient along the east coast of North America, Atlantic silversides () exhibit an extraordinary degree of local adaptation in a suite of traits, and the capacity for rapid adaptation from standing genetic variation, but we know little about the patterns of genomic variation across the species range that enable this remarkable adaptability.
View Article and Find Full Text PDFSci Rep
April 2019
Department of Biology, Stanford University Pacific Grove, California, 93950, USA.
Predatory behavior and top-down effects in marine ecosystems are well-described, however, intraguild interactions among co-occurring marine top predators remain less understood, but can have far reaching ecological implications. Killer whales and white sharks are prominent upper trophic level predators with highly-overlapping niches, yet their ecological interactions and subsequent effects have remained obscure. Using long-term electronic tagging and survey data we reveal rare and cryptic interactions between these predators at a shared foraging site, Southeast Farallon Island (SEFI).
View Article and Find Full Text PDFEcol Evol
November 2017
Resource partitioning is an important process driving habitat use and foraging strategies in sympatric species that potentially compete. Differences in foraging behavior are hypothesized to contribute to species coexistence by facilitating resource partitioning, but little is known on the multiple mechanisms for partitioning that may occur simultaneously. Studies are further limited in the marine environment, where the spatial and temporal distribution of resources is highly dynamic and subsequently difficult to quantify.
View Article and Find Full Text PDFEcol Evol
October 2016
Cascadia Research Collective 218 1/2 W. 4th Avenue Olympia Washington 98501.
The introduction of animal-borne, multisensor tags has opened up many opportunities for ecological research, making previously inaccessible species and behaviors observable. The advancement of tag technology and the increasingly widespread use of bio-logging tags are leading to large volumes of sometimes extremely detailed data. With the increasing quantity and duration of tag deployments, a set of tools needs to be developed to aid in facilitating and standardizing the analysis of movement sensor data.
View Article and Find Full Text PDFConcern over rapid environmental shifts associated with climate change has led to a search for molecular markers of environmental tolerance. Climate-associated gene expression profiles exist for a number of systems, but have rarely been tied to fitness outcomes, especially in nonmodel organisms. We reciprocally transplanted corals between two backreef locations with more and less variable temperature regimes to disentangle effects of recent and native environment on survival and growth.
View Article and Find Full Text PDFCoral reefs support immense biodiversity and provide important ecosystem services to many millions of people. Yet reefs are degrading rapidly in response to numerous anthropogenic drivers. In the coming centuries, reefs will run the gauntlet of climate change, and rising temperatures will transform them into new configurations, unlike anything observed previously by humans.
View Article and Find Full Text PDFYankee whalers of the 19th century had major impacts on populations of large whales, but these leviathans were not the only taxa targeted. Here, we describe the "collateral damage," the opportunistic or targeted taking of nongreat whale species by the American whaling industry. Using data from 5,064 records from 79 whaling logs occurring between 1840 and 1901, we show that Yankee whalers captured 5,255 animals across three large ocean basins from 32 different taxonomic categories, including a wide range of marine and terrestrial species.
View Article and Find Full Text PDFEcol Evol
December 2015
Bell Museum and Department of Ecology, Evolution, and Behavior University of Minnesota St. Paul Minnesota 55108 USA.
The Pleistocene was characterized by worldwide shifts in community compositions. Some of these shifts were a result of changes in fire regimes, which influenced the distribution of species belonging to fire-dependent communities. We studied an endangered juniper-oak shrubland specialist, the black-capped vireo (Vireo atricapilla).
View Article and Find Full Text PDFEvol Appl
March 2010
Laboratory of Ecology, Gembloux Agro-Bio Tech, University of Liege Gembloux, Belgium.
In recent decades, a growing number of studies have addressed connections between ecological and evolutionary concepts in biologic invasions. These connections may be crucial for understanding the processes underlying invaders' success. However, the extent to which scientists have worked on the integration of the ecology and evolution of invasive plants is poorly documented, as few attempts have been made to evaluate these efforts in invasion biology research.
View Article and Find Full Text PDFIntegr Comp Biol
December 2006
Hopkins Marine Station, Stanford University Pacific Grove, CA 93950, USA.
Metamorphosis is a substantial morphological transition between 2 multicellular phases in an organism's life cycle, often marking the passage from a prereproductive to a reproductive life stage. It generally involves major physiological changes and a shift in habitat and feeding mode, and can be subdivided into an extended phase of substantial morphological change and/or remodeling, and a shorter-term phase (for example, marine invertebrate "settlement," insect "adult eclosion," mushroom fruiting body emergence) where the actual habitat shift occurs. Disparate metamorphic taxa differ substantially with respect to when the habitat shift occurs relative to the timing of the major events of morphogenetic change.
View Article and Find Full Text PDFMethods Cell Biol
February 2005
Hopkins Marine Station of Stanford University Pacific Grove, California 93950, USA.
Bull Environ Contam Toxicol
September 1970
Hopkins Marine Station, Stanford University Pacific Grove, California.