11 results match your criteria: "Sree Neelakanta Government Sanskrit College[Affiliation]"

Anthropogenic activities have accelerated lead (Pb) accumulation across different trophic levels in the ecosystem. This study focused on the physiological mechanisms of an invasive plant, in a controlled hydroponic setting to understand its response to Pb stress. was exposed to 680 µM of lead acetate for 21 days, showing high tolerance (83%) with minimal growth inhibition.

View Article and Find Full Text PDF

The synthesis of silver nanoparticles (AgNPs) using environmentally friendly methods has become increasingly important due to its sustainability and cost-effectiveness. This study investigates the green synthesis of AgNPs using gall extracts from the plant , known for its high phytochemical content. The formation of AgNPs was verified through multiple analytical techniques, including UV-Vis spectroscopy, Fourier-transform infrared (FTIR) spectroscopy, transmission electron microscopy (TEM), zeta potential analysis, and dynamic light scattering (DLS).

View Article and Find Full Text PDF

Graphene exhibits remarkable properties and holds substantial promise for diverse applications. Its unique combination of thermal, chemical, physical, and biological properties makes it an appealing material for a wide range of uses. But, the lack of an economical and environmentally friendly approach to synthesize good-quality graphene represents an immense challenge for the scientific community.

View Article and Find Full Text PDF

Intensive industrial activities have elevated chromium (Cr) concentrations in the environment, particularly in soil and water, posing a significant threat due to its cytotoxic and carcinogenic properties. Phytoremediation has emerged as a sustainable and economical alternative for detoxifying pollutants. In this context, an attempt has been made to assess the efficacy of Cr remediation by the invasive plant Alternanthera tenella Colla.

View Article and Find Full Text PDF

This study presents a novel approach to fabricate silver nanoparticles (AgNPs) using the poisonous plant, leaf extract. The formation of AgNPs was confirmed by a color change from green to dark brown and validated by UV analysis. FTIR analysis identified functional groups on the AgNPs, while Zeta potential analysis assessed their stability.

View Article and Find Full Text PDF

Discovering novel natural resources for the biological synthesis of metal nanoparticles is one of the two key challenges facing by the field of nanoparticle synthesis. The second challenge is a lack of information on the chemical components needed for the biological synthesis and the chemical mechanism involved in the metal nanoparticles synthesis. In the current study, microwave-assisted silver nanoparticle (AgNP) synthesis employing the defensive gland extract of Mupli beetle, Luprops tristis Fabricius (Order: Coleoptera; Family: Tenebrionidae), addresses these two challenges.

View Article and Find Full Text PDF

Silver nanoparticles (AgNPs) made by green synthesis offer a variety of biochemical properties and are an excellent alternative to traditional medications due to their low cost. In the current study, we synthesised AgNPs from the leaf extract of the medicinal plant , commonly called narumpanal. The nanoparticles were characterised by ultraviolet-visible (UV-Vis) spectroscopy, Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM) and transmission electron microscopy (TEM).

View Article and Find Full Text PDF

In this piece of work, microwave-assisted conversion of a natural precursor in to high-valued nano-scale material was carried out by a completely greener method. The fluorescent carbon dots prepared, designated as long pepper derived carbon dots (LPCDs), have been thoroughly characterized to explore the physical and chemical properties. The system exhibits excitation dependent emission behavior and from the optimal studies the excitation and emission wavelength of the system was found to be 330 nm and 455 nm respectively.

View Article and Find Full Text PDF

The unpredictable invasion of the Mupli beetle, Fabricius (Coleoptera: Tenebrionidae), makes areas uninhabitable to humans. These beetles produce a strong-smelling, irritating secretion as a defence mechanism, which causes blisters on contact with human skin. In the current study, gas chromatography high-resolution mass spectrometry (GC-HRMS) analysis of the defensive gland extract of the Mupli beetle revealed the presence of compounds such as 2,3,dimethyl-1,4-benzoquinone, 1,3-dihydroxy-2-methylbenzene, 2,5-dimethyl hydroquinone, tetracosane, oleic acid, hexacosane, pentacosane, 7-hexadecenal and tert-hexadecanethiol.

View Article and Find Full Text PDF

Herein, we report an eco-friendly biomass based completely greener microwave assisted synthesis of carbon dots from wild lemon leaves having superior photo-luminescent properties with moderately good quantum yield. The carbon dots synthesized (LLCDs) were characterized by high resolution transmission electron microscopy, fluorescent, UV-vis absorption, Fourier transform infrared and Raman spectroscopic techniques. The quenching of native fluorescence of LLCDs observed with tetracycline antibiotic was made use to make it as a fluorescent probe.

View Article and Find Full Text PDF

A one pot synthesis of carbon dot incorporated porous coconut shell char derived sulphonated catalyst is reported here for the first time and is effectively used in the multicomponent synthesis of amidoalkyl naphthol. Macroporous nature of the char is revealed from scanning electron microscopic (SEM) analysis, whereas the dispersion of carbon dots (CDs) on the porous coconut shell char is confirmed from the high resolution transmission electron microscopic (HRTEM) analysis. Fluorescence emission spectrum further confirmed the presence of CDs in the catalyst.

View Article and Find Full Text PDF