11 results match your criteria: "Spanish National Research Council-University of Seville[Affiliation]"

Persistent luminescence materials have applications in diverse fields such as smart signaling, anticounterfeiting, and in vivo imaging. However, the lack of a thorough understanding of the precise mechanisms that govern persistent luminescence makes it difficult to develop ways to optimize it. Here we present an accurate model to describe the various processes that determine persistent luminescence in ZnGaO:Cr, a workhorse material in the field.

View Article and Find Full Text PDF

Lanthanide-doped upconversion nanoparticles (UCNPs), as multifunctional light sources, are finding utility in diverse applications ranging from biotechnology to light harvesting. However, the main challenge in realizing their full potential lies in achieving bright and efficient photon upconversion (UC). In this study, we present a novel approach to fabricate an array of gold nanoantennas arranged in a hexagonal lattice using a simple and inexpensive colloidal lithography technique, and demonstrate a significant enhancement of UC photoluminescence (UCPL) by up to 35-fold through plasmon-enhanced photoexcitation and emission.

View Article and Find Full Text PDF
Article Synopsis
  • * It employs finite-difference time-domain simulations to analyze how changing the effective refractive index of phosphor nanocrystal layers impacts decay rates, proposing corrections to previous models.
  • * The experimental results validate the model, enabling differentiation between radiative and non-radiative contributions to photoluminescence, and offering methods to adjust the decay rate and improve quantum yield in nanoparticle ensembles.
View Article and Find Full Text PDF

The complex electron-phonon interaction occurring in bulk lead halide perovskites gives rise to anomalous temperature dependences, like the widening of the electronic band gap as temperature increases. However, possible confinement effects on the electron-phonon coupling in the nanocrystalline version of these materials remain unexplored. Herein, we study the temperature (ranging from 80 K to ambient) and hydrostatic pressure (from atmospheric to 0.

View Article and Find Full Text PDF

Background: Smoking is considered the main cause of preventable illness and early deaths worldwide. The treatment usually prescribed to people who wish to quit smoking is a multidisciplinary intervention, combining both psychological advice and pharmacological therapy, since the application of both strategies significantly increases the chance of success in a quit attempt.

Objective: We present a study protocol of a 12-month randomized open-label parallel-group trial whose primary objective is to analyze the efficacy and efficiency of usual psychopharmacological therapy plus the Social-Local-Mobile app (intervention group) applied to the smoking cessation process compared with usual psychopharmacological therapy alone (control group).

View Article and Find Full Text PDF

In this work, we demonstrate a synthetic route to attain methylammonium lead bromide (CHNHPbBr) perovskite nanocrystals (nc-MAPbBr, 1.5 nm < size < 3 nm) and provide them with functionality as highly efficient flexible, transparent, environmentally stable, and adaptable color-converting films. We use nanoparticle metal oxide (MOx) thin films as porous scaffolds of controlled nanopores size distribution to synthesize nc-MAPbBr through the infiltration of perovskite liquid precursors.

View Article and Find Full Text PDF

The Role of Metal Halide Perovskites in Next-Generation Lighting Devices.

J Phys Chem Lett

July 2018

Institute of Materials Science of Seville , Spanish National Research Council-University of Seville, Americo Vespucio 49 , 41092 , Seville , Spain.

The development of smart illumination sources represents a central challenge for current technology. In this context, the quest for novel materials that enable efficient light generation is essential. Metal halide compounds with perovskite crystalline structure (ABX) have gained tremendous interest in the last five years since they come as easy-to-prepare high performance semiconductors.

View Article and Find Full Text PDF

In this Perspective we discuss the implications of employing metal particles of different shape, size, and composition as absorption enhancers in methylammonium lead iodide perovskite solar cells, with the aim of establishing some guidelines for the future development of plasmonic resonance-based photovoltaic devices. Hybrid perovskites present an extraordinarily high absorption coefficient which, as we show here, makes it difficult to extrapolate concepts and designs that are applied to other solution-processed photovoltaic materials. In addition, the variability of the optical constants attained from perovskite films of seemingly similar composition further complicates the analysis.

View Article and Find Full Text PDF

Organic-inorganic perovskite structures in which lead is substituted by tin are exceptional candidates for broadband light absorption. Herein we present a thorough analysis of the optical properties of CHNHSn Pb I films, providing the field with definitive insights about the possibilities of these materials for perovskite solar cells of superior efficiency. We report a user's guide based on the first set of optical constants obtained for a series of tin/lead perovskite films, which was only possible to measure due to the preparation of optical quality thin layers.

View Article and Find Full Text PDF

Hybrid organic-inorganic perovskite materials have risen up as leading components for light-harvesting applications. However, to date many questions are still open concerning the operation of perovskite solar cells (PSCs). A systematic analysis of the interplay among structural features, optoelectronic performance, and ionic movement behavior for FA0.

View Article and Find Full Text PDF

Biocompatible films with tailored spectral response for prevention of DNA damage in skin cells.

Adv Healthc Mater

September 2015

Synthetic Biology and Smart Therapeutic Systems Group, Andalusian Centre for Nanomedicine and Biotechnology (BIONAND), Parque Tecnológico de Andalucía, C/Severo Ochoa 35, 29590, Campanillas, Málaga, Spain.

A hybrid nanostructured organic-in-organic biocompatible film capable of efficiently blocking a preselected range of ultraviolet light is designed to match the genotoxic action spectrum of human epithelial cells. This stack protects cultured human skin cells from UV-induced DNA lesions. As the shielding mechanism relies exclusively on reflection, the secondary effects due to absorption harmful radiation are prevented.

View Article and Find Full Text PDF