3 results match your criteria: "Spain. jsancho@unizar.es and Biocomputation and Complex Systems Physics Institute (BIFI)[Affiliation]"

Predicting stabilizing mutations in proteins using Poisson-Boltzmann based models: study of unfolded state ensemble models and development of a successful binary classifier based on residue interaction energies.

Phys Chem Chem Phys

December 2015

Departamento de Bioquímica y Biología Molecular y Celular, Facultad de Ciencias, Universidad de Zaragoza, Pedro Cerbuna 12, 50009 Zaragoza, Spain. and Biocomputation and Complex Systems Physics Institute (BIFI), Joint Unit BIFI-IQFR (CSIC), Mariano Esquillor s/n, Edificio I+D, 50018, Zaragoza, Spain.

In many cases the stability of a protein has to be increased to permit its biotechnological use. Rational methods of protein stabilization based on optimizing electrostatic interactions have provided some fine successful predictions. However, the precise calculation of stabilization energies remains challenging, one reason being that the electrostatic effects on the unfolded state are often neglected.

View Article and Find Full Text PDF

The mechanism of water/ion exchange at a protein surface: a weakly bound chloride in Helicobacter pylori apoflavodoxin.

Phys Chem Chem Phys

November 2015

Departamento de Bioquímica y Biología Molecular y Celular, Facultad de Ciencias, Universidad de Zaragoza, Pedro Cerbuna 12, 50009, Zaragoza, Spain. and Biocomputation and Complex Systems Physics Institute (BIFI), Joint Unit BIFI-IQFR (CSIC). Edificio I + D, Mariano Esquillor, 50018, Zaragoza, Spain.

Binding/unbinding of small ligands, such as ions, to/from proteins influences biochemical processes such as protein folding, enzyme catalysis or protein/ligand recognition. We have investigated the mechanism of chloride/water exchange at a protein surface (that of the apoflavodoxin from Helicobacter pylori) using classical all-atom molecular dynamics simulations. They reveal a variety of chloride exit routes and residence times; the latter is related to specific coordination modes of the anion.

View Article and Find Full Text PDF

Flavodoxins: sequence, folding, binding, function and beyond.

Cell Mol Life Sci

April 2006

Dep. Bioquímica y Biología Molecular y Celular, Fac. Ciencias and Biocomputation and Complex Systems Physics Institute (BIFI), Universidad de Zaragoza, Spain.

Flavodoxins are electron-transfer proteins involved in a variety of photosynthetic and non-photosynthetic reactions in bacteria, whereas, in eukaryotes, a descendant of the flavodoxin gene helps build multidomain proteins. The redox activity of flavodoxin derives from its bound flavin mononucleotide cofactor (FMN), whose intrinsic properties are profoundly modified by the host apoprotein. This review covers the very exciting last decade of flavodoxin research, in which the folding pathway, the structure and stability of the apoprotein, the mechanism of FMN recognition, the interactions that stabilize the functional complex and tailor the redox potentials, and many details of the binding and electron transfer to partner proteins have been revealed.

View Article and Find Full Text PDF