350 results match your criteria: "Spain. Donostia International Physics Center (DIPC) and Centro de Física de Materiales[Affiliation]"

Synthesis and Characterization of a Non-planar Cyclophenylene on Au(111).

Chemistry

January 2025

Centro de Investigacion en Nanomateriales y Nanotecnologia, -, 33940, El Entrego, SPAIN.

We report the surface-assisted synthesis of a non-planar cyclophenylene derivative containing four meta- and two para- connected phenylene moieties on Au(111), via hierarchical Ullmann coupling of a 1,10-dibrominated angular [3]phenylene and subsequent C-C bond cleavage at the four-membered rings. Scanning tunneling microscopy and spectroscopy (STM/STS) were used for the characterization of its chemical structure and electronic properties. Density functional theory (DFT) calculations support the experimental observations.

View Article and Find Full Text PDF

Controlling the light emitted by individual molecules is instrumental to a number of advanced nanotechnologies ranging from super-resolution bioimaging and molecular sensing to quantum nanophotonics. Molecular emission can be tailored by modifying the local photonic environment, for example, by precisely placing a single molecule inside a plasmonic nanocavity with the help of DNA origami. Here, using this scalable approach, we show that commercial fluorophores may experience giant Purcell factors and Lamb shifts, reaching values on par with those recently reported in scanning tip experiments.

View Article and Find Full Text PDF

Schottky Defects Suppress Nonradiative Recombination in CHNHPbI through Charge Localization.

J Phys Chem Lett

January 2025

College of Chemistry, Key Laboratory of Theoretical & Computational Photochemistry of Ministry of Education, Beijing Normal University, Beijing 100875, People's Republic of China.

Hybrid lead halide perovskites are promising materials for photovoltaic applications due to their exceptional optoelectronic properties. Here, we investigate the impact of Schottky defects─specifically PbI(V) and CHNHI (V) vacancies─on nonradiative recombination in CHNHPbI using time-dependent density functional theory and nonadiabatic (NA) molecular dynamics. Our results reveal that Schottky defects do not alter the fundamental bandgap or introduce trap states but instead distort the surrounding lattice, localizing the hole distribution.

View Article and Find Full Text PDF

In the realm of nanotechnology, the integration of quantum emitters with plasmonic nanostructures has emerged as an innovative pathway for applications in quantum technologies, sensing, and imaging. This research paper provides a comprehensive exploration of the photoluminescence enhancement induced by the interaction between quantum emitters and tailored nanostructure configurations. Four canonical nanoantennas (spheres, rods, disks, and crescents) are systematically investigated theoretically in three distinct configurations (single, gap, and nanoparticle-on-mirror nanoantennas), as a representative selection of the most fundamental and commonly studied structures and arrangements.

View Article and Find Full Text PDF

Scattering of CO from Vacant-MoSe with O Adsorbates: Is CO Formed?

J Phys Chem C Nanomater Interfaces

November 2024

Centro de Física de Materiales CFM/MPC (CSIC-UPV/EHU), Paseo Manuel de Lardizabal 5, 20018 Donostia-San Sebastián, Spain.

Using ab initio molecular dynamics (AIMD) simulations, based on density functional theory that also accounts for van der Waals interactions, we study the oxidation of gas-phase CO on MoSe with a Se vacancy and oxygen coverage of 0.125 ML. In the equilibrium configuration, one of the O atoms is adsorbed on the vacancy and the other one atop one Se atom.

View Article and Find Full Text PDF
Article Synopsis
  • - Alcohols derived from biological waste and renewable electricity are emerging as eco-friendly alternatives for transportation fuels, requiring only minor modifications to engines for use in vehicles.
  • - The research utilizes terahertz (THz) and gigahertz (GHz) spectroscopies to analyze a range of fuels including diesel, ethanol, and n-butanol, ultimately enhancing fuel property modeling by introducing new Debye parameters for better accuracy.
  • - Findings indicate a linear correlation between alcohol concentration and dielectric properties, though challenges remain in accurately modeling low alcohol concentrations, suggesting avenues for future research in fuel characteristics.
View Article and Find Full Text PDF

Expanding Chemical Space in the Synthesis of Gold Bipyramids.

Small

January 2025

Centro de Física de Materiales (CSIC-UPV/EHU), Paseo Manuel de Lardizabal 5, Donostia-San Sebastián, 20018, Spain.

Gold bipyramids (AuBPs), despite having superior properties compared to their spectroscopically similar counterparts, gold nanorods, have found comparatively limited applications. This discrepancy is primarily due to the lack of protocols to tailor their dimensions. Typically, the concentration of Au seeds is virtually the sole factor that determines the aspect ratio and thus, the optical properties of AuBPs.

View Article and Find Full Text PDF

The enhancement of the molecular Raman signal in plasmon-assisted surface-enhanced Raman scattering (SERS) results from electromagnetic and chemical mechanisms, the latter determined to a large extent by the chemical interaction between the molecules and the hosting plasmonic nanoparticles. A precise quantification of the chemical mechanism in SERS based on quantum chemistry calculations is often challenging due to the interplay between the chemical and electromagnetic effects. Based on an atomistic description of the SERS signal, which includes the effect of strong field inhomogeneities, we introduce a comprehensive approach to evaluate the chemical enhancement in SERS, which conveniently removes the electromagnetic contribution inherent to any quantum calculation of the Raman polarization.

View Article and Find Full Text PDF

Strong-field effects in the photo-induced dissociation of the hydrogen molecule on a silver nanoshell.

Chem Sci

October 2024

Centro de Física de Materiales CFM/MPC (CSIC-UPV/EHU) Paseo Manuel de Lardizabal 5 Donostia-San Sebastián 20018 Spain

Plasmonic catalysis is a rapidly growing field of research, both from experimental and computational perspectives. Experimental observations demonstrate an enhanced dissociation rate for molecules in the presence of plasmonic nanoparticles under low-intensity visible light. The hot-carrier transfer from the nanoparticle to the molecule is often claimed as the mechanism for dissociation.

View Article and Find Full Text PDF

Submonolayer amounts of chloroaluminum-phthalocyanine on Cu(100) were studied with scanning tunneling spectroscopy. The molecule can be prepared in a fourfold symmetric state whose conductance spectrum exhibits a zero-bias feature similar to a Kondo resonance. In magnetic fields, however, this resonance splits far more than expected from the spin of a single electron.

View Article and Find Full Text PDF

Formation and Recombination Dynamics of Polarons in Goethite: A Time-Domain Ab Initio Study.

J Phys Chem Lett

October 2024

College of Chemistry, Key Laboratory of Theoretical & Computational Photochemistry of Ministry of Education, Beijing Normal University, Beijing 100875, China.

The temperature and the coordination environment significantly affect polaron dynamics. Using goethite (FeOOH) as a model, our study examines polaron formation and recombination behavior under various conditions, including electron injection, photoexcitation, and heterovalent doping. Ab initio and nonadiabatic molecular dynamics (NAMD) simulations reveal that polaron formation in FeOOH is dependent on temperature via an adiabatic mechanism with higher temperatures leading to shorter formation times.

View Article and Find Full Text PDF
Article Synopsis
  • * Researchers found that a protected diradical variant can maintain its open-shell state on a gold substrate, showing specific interactions between its unpaired electrons and a unique nonplanar geometry.
  • * Using scanning tunneling microscopy (STM), the team was able to observe and manipulate the magnetic states of these molecules, indicating that structural changes can affect their spin properties and suggesting future applications in spin-crossover materials.
View Article and Find Full Text PDF

Plasmonic nanoparticle sensors: current progress, challenges, and future prospects.

Nanoscale Horiz

November 2024

CINBIO, Department of Physical Chemistry, Universidade de Vigo, 36310 Vigo, Spain.

Plasmonic nanoparticles (NPs) have played a significant role in the evolution of modern nanoscience and nanotechnology in terms of colloidal synthesis, general understanding of nanocrystal growth mechanisms, and their impact in a wide range of applications. They exhibit strong visible colors due to localized surface plasmon resonance (LSPR) that depends on their size, shape, composition, and the surrounding dielectric environment. Under resonant excitation, the LSPR of plasmonic NPs leads to a strong field enhancement near their surfaces and thus enhances various light-matter interactions.

View Article and Find Full Text PDF

Proper formulation of systems containing plasmonic and photochromic units, such as gold nanoparticles and azobenzene derivatives, yields materials and interfaces with synergic functionalities. Moreover, gold nanoparticles are known to accelerate the Z-E isomerization of azobenzene molecules in the dark. However, very little is known about the light-driven, plasmon-assisted Z-E isomerization of azobenzene compounds.

View Article and Find Full Text PDF

Accessing the terahertz (THz) spectral domain through surface-enhanced Raman spectroscopy (SERS) is challenging and opens up the study of low-frequency molecular and electronic excitations. Compared to direct THz probing of heterogenous ensembles, the extreme plasmonic confinement of visible light to deep sub-wavelength scales allows the study of hundreds or even single molecules. We show that self-assembled molecular monolayers of a set of simple aromatic thiols confined inside single-particle plasmonic nanocavities can be distinguished by their low-wavenumber spectral peaks below 200 cm, after removal of a bosonic inelastic contribution and an exponential background from the spectrum.

View Article and Find Full Text PDF

Unveiling the Interlayer Interaction in a 1H/1T TaS van der Waals Heterostructure.

Nano Lett

September 2024

Departamento de Física de la Materia Condensada, Universidad Autónoma de Madrid - Cantoblanco Campus, 28049 Madrid, Spain.

This study delves into the intriguing properties of the 1H/1T-TaS van der Waals heterostructure, focusing on the transparency of the 1H layer to the charge density wave of the underlying 1T layer. Despite the sizable interlayer separation and metallic nature of the 1H layer, positive bias voltages result in a pronounced superposition of the 1T charge density wave structure on the 1H layer. The conventional explanation relying on tunneling effects proves insufficient.

View Article and Find Full Text PDF

Here, the unresolved question of why single-chain nanoparticles (SCNPs) prepared from a weak polyelectrolyte (PE) precursor can be synthesized on a large scale in a concentrated solution is addressed, unlike SCNPs obtained from an equivalent neutral (nonamphiphilic) polymer precursor. The combination of the standard elastic single-chain nanoparticles (ESN) model -developed for neutral chains- with the classical scaling theory of PE solutions provides the key. Essentially, the long-range repulsion between electrostatic blobs in a weak PE precursor restricts the cross-linking process during SCNPs formation to the interior of each blob.

View Article and Find Full Text PDF

Radiative Cooling Properties of Portlandite and Tobermorite: Two Cementitious Minerals of Great Relevance in Concrete Science and Technology.

ACS Appl Opt Mater

June 2024

Department of Electronics and Telecommunications, Politecnico di Torino, Corso Duca degli Abruzzi 24, Torino 10129, Italy.

Although concrete and cement-based materials are the most engineered materials employed by mankind, their potential for use in daytime radiative cooling applications has yet to be fully explored. Due to its complex structure, which is composed of multiple phases and textural details, fine-tuning of concrete is impossible without first analyzing its most important ingredients. Here, the radiative cooling properties of Portlandite (Ca(OH)) and Tobermorite (CaSiO(OH)·4HO) are studied due to their crucial relevance in cement and concrete science and technology.

View Article and Find Full Text PDF

Segmental and Chain Dynamics of Polyisoprene-Based Model Vitrimers.

Macromolecules

June 2024

Polymer Synthesis Laboratory, Chemistry Program, KAUST Catalysis Center, Physical Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), 23955 Thuwal, Saudi Arabia.

Polymer vitrimers are a new class of materials that combine the advantages of thermoplastics and thermosets. This is due to the dynamic nature of the chemical bonds linking different chains. However, how this property affects the polymer dynamics at different length scales is still an open question.

View Article and Find Full Text PDF

Choreographing Oscillatory Hydrodynamics with DNA-Coated Gold Nanoparticles.

J Am Chem Soc

July 2024

Centro de Física de Materiales CSIC-UPV/EHU, Paseo Manuel de Lardizabal 5, 20018 Donostia San-Sebastián, Spain.

Article Synopsis
  • Living systems often react periodically to irregular energy inputs, which is a key characteristic.
  • A new nanoparticle system is explored that responds hierarchically to light, using effects from heat and reversible DNA bonding to create oscillating water flows.
  • This system includes positive feedback from the slow gathering of gold nanoparticles and negative feedback from rapid disassembly, along with time delays, to produce an oscillating response.
View Article and Find Full Text PDF

Superconducting spintronic heat engine.

Nat Commun

June 2024

NEST, Istituto Nanoscienze-CNR and Scuola Normale Superiore, Pisa, Italy.

Heat engines are key devices that convert thermal energy into usable energy. Strong thermoelectricity, at the basis of electrical heat engines, is present in superconducting spin tunnel barriers at cryogenic temperatures where conventional semiconducting or metallic technologies cease to work. Here we realize a superconducting spintronic heat engine consisting of a ferromagnetic insulator/superconductor/insulator/ferromagnet tunnel junction (EuS/Al/AlO/Co).

View Article and Find Full Text PDF

Single-chain nanoparticles (SCNPs) are a fascinating class of soft nano-objects with promising properties and relevance to protein condensates, polymer nanocomposites, nanomedicine, bioimaging, catalysis, and drug delivery. We combine molecular dynamics simulations and equilibrium and time-dependent statistical mechanical theory to construct a unified understanding of how the internal conformational structure of SCNPs, of both a simple fractal globule-like form and more complex objects with multiple internal intermediate length scales, determines nm-scale intermolecular packing correlations, thermodynamic properties, and center-of-mass diffusion over a wide range of concentrations up to dense melts. The intermolecular pair correlations generically exhibit a distinctive deep correlation hole form due to SCNP internal connectivity structure and repulsive interparticle interactions associated with a globular-like conformation on the macromolecular scale, with concentration-dependent deviations at small separations.

View Article and Find Full Text PDF

We present a neutron spin echo (NSE) investigation to examine the impact of macromolecular crowding on the dynamics of single-chain nanoparticles (SCNPs), serving as synthetic models for biomacromolecules with flexibility and internal degrees of freedom, such as intrinsically disordered proteins (IDPs). In particular, we studied the dynamics of a medium-size poly(methyl methacrylate) (PMMA)-based SCNP (33 kDa) in solutions with low- (10 kDa) and high- (100 kDa) molecular weight analogous deuterated PMMA linear crowders. The dynamic structure factors of the SCNPs in dilute solution show certain degrees of freedom, yet the analysis in terms of the Zimm model reveals high internal friction that effectively stiffens the chain-a phenomenon also observed for IDPs.

View Article and Find Full Text PDF

Low density phases of TiO by cluster self-assembly.

Sci Rep

May 2024

Centro de Física de Materiales-CFM-MPC, Donostia International Physics Center DIPC, Paseo Manuel de Lardizabal 5, 20018, San Sebastián, Spain.

The interest in titanium dioxide (TiO ) phases is growing due to the number of applications in cosmetics, food industry and photocatalysis, an increase that is driven by its exceptional properties when engineered at the nanoscale like in the form of nanoparticles. Our goal is to discover unknown low-density phases of TiO , with potential for applications in various fields. We then use well-known TiO clusters as fundamental building blocks to be self-assembled into unique structures to study their distinct characteristics.

View Article and Find Full Text PDF